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Abstract
Wound healing is a complicated, organised process that includes numerous phases that connect 
diverse cellular events and activate several intracellular molecular pathways in injured cells and 
tissues. Delay in wound healing owing to high levels of oxidative stress is a major difficulty 
in various metabolic illnesses, including diabetes mellitus. Several therapeutic wound dressing 
materials and methods, such as hyperbaric oxygen treatment and negative pressure wound 
therapy, have been developed to speed up wound healing and restore cellular homeostasis. A 
significant advance has been made in locating transcriptional regulators involved in wound 
healing. The redox-sensitive transcription factor nuclear factor erythroid 2-related factor 
2 (Nrf2) is the major regulator of antioxidant defence regulation, inducing the expression of 
cytoprotective genes and increasing the generation of antioxidants that scavenge free radicals. 
Activators of Nrf2 have been shown to reduce oxidative stress and improve wound healing in a 
variety of pathophysiological situations, including diabetes and its consequences such as diabetic 
foot ulcers, chronic kidney disease, and diabetic nephropathy. Several therapeutic chemicals 
have been discovered to alleviate oxidative stress and consequently increase cell proliferation. 
Angiogenesis results in tissue healing through activating the transcription factor Nrf2. This 
review focuses on the role of Nrf2-mediated antioxidant gene expression in diabetic wound 
healing.
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Introduction
The most serious and life-threatening complication of Type 
II diabetes mellitus (T2DM) is a diabetic foot ulcer (DFU).1 
Diabetic  wounds are produced by chronic inflammation 
and impose a considerable medical and financial burden 
on the patient. Nearly 25% of patients with type II diabetes 
mellitus suffer from diabetic foot ulcers.2 This is due to 
dysregulated immune responses, hyperglycaemia, hypoxia, 
and chronic inflammation.3 It is estimated that one lower 
limb is amputated every 30 seconds.4 Diabetic foot patients 
are becoming more common in both urban and rural 
India, with foot ulcers accounting for 85% of amputations. 
Almost 75% of these amputations are performed on a 
neuropathic foot, resulting in an infection that could have 
been avoided. In India, neuropathic lesions account for 
80% of foot ulcers, with neuro ischemic lesions accounting 
for the remaining 20%. Peripheral artery disease (PAD) 
affects 3.2% of diabetic patients before the age of 50 and 
33% of diabetic patients beyond the age of 80. This rise 
is linked to both age and the duration of diabetes.5 A 

wound typically heals in 3–4 weeks; however, this might 
vary depending on the kind and intricacy of the wound. 
Chronic wound healing is slowed due to complicated 
cellular and molecular activities. Reactive oxygen species, 
ischemia, infection, excessive production of inflammatory 
cytokines, immunological suppression, depletion of 
extracellular matrix (ECM), and elevated levels of matrix 
metalloproteinases (MMP) all contribute to chronic 
inflammation. The vast majority of chronic wounds are 
classified as one of three types: venous ulcers, pressure 
ulcers, and diabetic ulcers, with a fourth kind caused 
by arterial ischemia. Furthermore, many reports have 
identified that chronic oxidative stress is associated with 
the progression of diabetic complications and impaired 
wound healing.6 Hence, transcription nuclear factor-E2–
related factor (NrF2) regulates the adaptive response to 
exogenous and endogenous oxidative stress, as well as cell 
migration, proliferation, apoptosis, and differentiation.7
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Hyperglycaemia Induced Oxidative Stress and 
Inflammation
Hyperglycaemia can alter metabolic functions resulting 
in serious micro and macrovascular dysfunction. The 
endothelial cells lose their integrity and become susceptible 
to apoptosis.8 Monocytes may be activated and induce 
inflammatory mediators such as diacylglycerol protein 
kinase C (PKC) and nuclear factor-kB (NF-kB), elevating 
oxidative stress. Chronic inflammation is the hallmark 
of diabetes patients, where infiltration of macrophages, 
lymphocytes, and plasma cells and the release of pro-
inflammatory cytokines take place, leading to tissue 
damage.9 Hyperglycaemia increases the use of oxygen, 
resulting in cellular hypoxia and facilitating the formation 
of reactive oxygen species.10 The overproduction of ROS 
causes cellular damage by interacting with mitochondrial 
DNA and proteins (Figure 1). 

Nrf2 and Keap 1
With 605 amino acids and seven domains ranging from 
Neh1 to Neh7, Nrf2 is a member of the Cap ‘n’ Collar 
(CNC) family. (Figure 2a) The Keap1 binding is regulated 
by the Neh2 domain. The transactivation domains Neh 4, 
Neh 5, and Neh 3 mediate the interaction between Nrf2 
and other coactivators.11 The cytoplasmic translocation 
of Nrf2 is controlled by Neh5. The serine-rich Neh6 
domain regulates Nrf2 ubiquitination, which leads to 
proteasomal degradation.12 The basic portion of the Neh1 
domain is a leucine zipper that governs DNA binding and 
nuclear antioxidant response element (ARE) signalling. 
By increasing retinoic X receptor binding to Nrf2, Neh7 
suppresses Nrf2-ARE binding.13 The redox homeostasis-
maintaining Nrf2/kelch-like Keap1 pathway is impaired in 
T2DM. During normal conditions, Keap1 interacts with 
Nrf2 and the cell’s actin cytoskeleton to sequester Nrf2 in 
the cytoplasm and increase ubiquitination and destruction 
of Nrf2.14 Certain cysteine-rich oxidant and electrophile 
sensor areas of Keap1 are covalently changed in the presence 

of oxidative stress, blocking Nrf2 ubiquitination. It is also 
found that Nrf2 dissociates from its repressor Keap1 and 
translocate to the nucleus, where it forms heterodimers 
with the musculoaponeurotic fibrosarcoma (Maf) protein 
and binds to Maf recognition element sequences such as 
the ARE and the electrophile response element (EpRE).15

Nrf2 and Keap-1 Interaction
The activity of Nrf2 is strictly controlled by its cytoplasmic 
repressor protein, Keap1. Keap1, also known as Nrf2 
inhibitor, is a 624 amino acid dimeric protein consisting of 
various domains.16 (Figure 2b) The domain structures are 
the N-terminal region (NTR), broad-complex, tram track, 
and bric-a-brac (BTB) domain, the intervening region 
(IVR) or BACK domain, the double glycine repeats (DGR) 
or beta-propeller domain, which is also known as the kelch 
domain, and the C-terminal region (CTR).17 The flexible 
IVR connects the BTB and Kelch domains of Keap1. The 
interaction of Nrf2 and Keap1, is explained by the “hinge 
and latch” concept. (Figure 2c) The kelch domain of the 
homo dimeric Keap1 binds to the Neh2 DLG motif, which 
has a lower affinity, and the ETGE motif, which has a higher 
affinity. This makes a complex.18 This NRF2-Keap1 complex 
makes it so that a CUL3-dependent E3-ubiquitin ligase 
adds ubiquitin to Nrf2, which then makes the proteasome 
break down Nrf2.19 Hence, Nrf2 is continuously targeted 
for ubiquitous proteasomal degradation and thus has a very 
short half-life of fewer than 20 min.20 The binding of Keap1 
to the DLG and ETGE motifs of the Neh2 domain in Nrf2 
is essential for Nrf2 ubiquitination and degradation. Once 
attached, Nrf2 gets properly configured for ubiquitination 
by Cullin 3 (CuI3).21 The BTB domain of Keap1 binds to 
CuI3, resulting in the formation of a ubiquitin 3-ligase 
complex that ubiquitinates the seven [Asp-Leu-Gly (DLG) 
and Glu-Thr-Gly-Glu (ETGE)] residues situated between 
the two motifs in Nrf2. This complex further constitutively 
polyubiquitinates Nrf2 by adding several ubiquitins to it, 
until it gets activated, after which it is degraded by the 

Figure 1. Hyperglycemia induced oxidative stress and tissue damage.
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Figure 2. Structure of (a) Nrf2, (b) Keap-1, and (c) hinge and latch concept of KEAP-1 and NrF2 complex.

26S proteasome.22 Human Keap1 has 27 cysteine residues, 
and Cys151, Cys273, and Cys288 are important for the 
ubiquitination of Nrf2 when Keap1 is involved.23

Mechanism of Action of Nrf2 Activators
Nrf2 is a transcription factor that controls how many phase 
I and phase II antioxidant enzymes and anti-inflammatory 
mediators are made.24 It is an important part of the body’s 
defence against oxidative stress, inflammation, and other 
problems that can happen when a diabetic wound heals.25 
Many diseases caused by oxidative stress, such as diabetes, 
heart disease, and neurological disease, have been linked 
to Nrf2 dysregulation.26 This makes Nrf2 activators 
excellent agents to increase antioxidant capacity, decrease 
inflammation, and alleviate pathology in diabetic wound 
healing.27

Nuclear factor E2-related factor (Nrf2) is a transcription 
factor that controls the expression of as many as 200 
genes.28 The proteins encoded by Nrf2 genes control several 
functions, like anti-inflammation, antioxidant defense, 
apoptosis, detoxification, removal of oxidised proteins by 
the proteasome, and DNA repair.29 Keap-1 is a regulatory 
protein that regulates the levels of Nrf2 in the cytoplasm 
of the cell. The Neh2 domain of Nrf2 binds to the barrel 
structure of Keap-1 in basal conditions.30 After this, 
Cullin-3 binds to the Keap-1-Nrf2 complex, which causes 
the ubiquitin 3-ligase complex to be made.31 The ubiquitin 
3-ligase complex binds to many ubiquitin molecules, 
resulting in polyubiquitination of Nrf2, which serves as a 
signal for proteasomal degradation. Keap-1 contains a lot 
of cysteines in its structure, and the free sulfhydryl (-SH) 
of cysteine helps Keap-1 act as a sensor of oxidative stress.32 
During oxidative stress, electrophiles alkylate Keap-1 and 
prevent Keap-1 from degrading Nrf2. This leads to the 
accumulation of recently synthesised Nrf2, which increases 

the antioxidant potential by promoting the transcription 
of antioxidant and detoxifying genes.33 In an alternative 
pathway, Nrf2 is degraded by phosphorylation by glycogen 
synthase kinase 3β (GSK3β). This degradation of Nrf2 
by GSK3β is also blocked by elevated levels of oxidants 
that lead to the accumulation of freshly synthesised 
Nrf2.34 In another pathway, Keap-1 itself is degraded by 
p62. In this pathway, p62 is phosphorylated by TANK-
binding kinase 1 (TBK1) and the mechanistic target of 
rapamycin complex 1 (mTORC1). The phosphorylated 
p62 forms a complex with KEAP-1, and this complex is 
degraded by autophagy in cells. All of these pathways are 
turned on by oxidants, which causes a buildup of newly 
made Nrf2.35 Nrf2 escapes breakdown into the nucleus 
and forms heterodimers with sMaf (Nrf2/sMaf).36 In the 
nucleus, the activity of Nrf2 is negatively regulated by 
Bach-1, which competes with Nrf2 to form heterodimers 
with sMaf.37 As many as 200 cytoprotective genes are 
turned on when Nrf2/sMaf binds to antioxidant response 
elements.38 Among the genes activated by Nrf2 in response 
to oxidative stress are glutathione S-transferases (GSTs), 
nicotinamide adenine dinucleotide phosphate (NAD(P)
H), quinone oxidoreductase 1 (NQO1), manganese 
superoxide dismutase (MnSOD), heme oxygenase 1 (HO-
1), glutamate-cysteine ligase (GCL), and GSTs.39 Hence 
it produces an antioxidant effect, as shown in   Figure 3. 
Oxidative stress has been linked to many diseases, and 
the production of ROS is a key part of how inflammatory 
reactions develop.40 Several studies have shown that the 
Nrf2 signalling pathway is important for both cytosolic 
and mitochondrial ROS production. This is because the 
mitochondrion is the main place where ROS are made in 
both healthy and unhealthy cells.41
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Figure 3. Nrf2 activators and antioxidant gene expression.

Role of NrF2 in Diabetic Wound Healing
The way a diabetic wound heals is different from how 
a normal wound heals because of pathophysiological 
problems (like less blood flow and slower healing).42 
Chronic oxidative stress has been associated with the 
progression of diabetic issues and reduced wound healing 
as a result of intrinsic (wound contraction and matrix 
turnover) and exogenous causes (infection and repetitive 
trauma).43 Transcriptional controllers are important for 
diabetic wound healing because they turn on or turn 
off gene expression in a complex cellular and molecular 
process at different stages of wound healing.44 At the wound 
site, the signal transducer and activator of transcription 3 
play critical functions in keratinocyte proliferation and 
differentiation (STAT3).45 By activating and maintaining 
antioxidant proteins, the leucine zipper protein Nrf2 
protects cells from oxidative damage. The transcription 
factor Nrf2 regulates cell migration, proliferation, apoptosis, 
and differentiation, as well as the adaptive response to 
external and internal oxidative stress.46 ARE has unique 
features, such as cAMP (cyclic adenosine monophosphate) 
response element-binding protein (CREBP)/p300, which 
controls ARE-induced antioxidant gene transcription, 
which decreases oxidative stress.47 During oxidative stress, 
Nrf2 separates from Keap1 and dimerizes with the small 
Maf protein in the nucleus, as well as ARE coactivators 
such as the CREBP-binding protein CBP/p. As a result, 
Nrf2 is the primary redox regulator. Nrf2 also suppresses 
NF-kB translocation to the nucleus, which reduces the 
production of proinflammatory cytokines, lowering 
long-term inflammation and facilitating diabetic wound 
healing48 (Figure 4). The use of Nrf2 activators as a topical 
treatment for diabetic wounds is effective.

Nrf2 Activation and Inflammasome Inhibition
In general, Nrf2 activation is thought to have anti-
inflammatory effects, but Nrf2 target genes are not 
directly engaged in inflammation, such as through the 
control of genes producing proinflammatory cytokines.49 
Inflammation, on the other hand, is related to oxidative 
stress and ROS, which are essential for pathogen elimination 
or avoidance. It is plausible to believe that Nrf2 activation 
minimises the deleterious effects of ROS on inflamed 
tissue cells and, ultimately, inflammation.50 Furthermore, 
the idea that NLR family pyrin domain containing 3 
(NLRP3) inflammasome activation is controlled by ROS 
and oxidative stress provides an even more straightforward 
explanation for Nrf2 signalling anti-inflammatory action.51 
As a result, multiple studies have been published since the 
introduction of the hypothesis that ROS regulates NLRP3 
inflammasome activation, demonstrating a link between 
Nrf2 activation and NLRP3 inflammasome suppression 
in many different disease models associated with 
inflammation.52 The majority of this research employed 
plant-derived compounds that are well-known in Eastern, 
traditional Chinese medicine for their effectiveness in 
treating inflammatory diseases in patients. Nonetheless, 
treatment of cells or animals with these chemicals produces 
Nrf2 activation and NLRP3 inflammasome suppression 
in each case.53 Since the majority of research is based 
on animal models for inflammatory illnesses in which 
complete tissues are studied, it is not always clear if Nrf2 
activation and NLRP3 inflammasome suppression occur 
in the same cells, surrounding cells, or even distinct cells.54

Nrf2 Activators
Various phytochemicals have also been shown to maintain 
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Figure 4. Role of HO-1 gene expression in diabetic wound healing.

redox equilibrium by activating Nrf2 and numerous 
kinases, which increase phase II antiapoptotic genes and 
enzymes. Mesenchymal stem cell therapies have also proven 
to activate NrF2 signalling to promote an antioxidant effect 
in diabetic wound healing.55 Some of them are listed below: 
(Table 1).

Conclusion
Numerous studies have highlighted the promising 
potential of antioxidant therapy in diabetic wound 
healing, given the central role of oxidative stress in the 
pathology of chronic diabetic wounds. The NF-kB and 
Nrf2/Keap1 pathways are key pathways in oxidative stress; 
therefore, therapies targeting these pathways have been 
shown to effectively promote diabetic wound healing. 
Natural Nrf2 activators derived from plant sources as 

well as synthetic anti-inflammatory drugs require further 
experimental validation. Research for efficient therapeutic 
agents promoting Nrf2 activation came up with some 
new drugs that have entered clinical trials and will 
undoubtedly provide advancement in the management 
of diabetic wound healing in the near future. As a result, 
the current review would help to refine our understanding 
of the Nrf2 signalling pathway’s interaction with the 
expression of associated target genes, as well as support 
the hypothesis that Nrf2 inducers have a high potential as 
anti-inflammatory therapeutic agents. Despite significant 
breakthroughs in the treatment of diabetic wounds, their 
involvement in metabolic diseases such as diabetes mellitus 
and its repercussions remain uncertain. The activation of 
NrF2 and HO-1 will be achieved by using NrF2 inducers 
as nanoparticles and integrating innovative drug delivery 

Table 1. Nrf2 activators for diabetic wound healing in clinical trials.

No. Clinical trial ID Drug /Study Patients 
enrolled

Route of  
administration Status

1 NCT00815217 Adipose derived stem cell 25 Intramuscular Recruiting

2 NCT03248466 Autologous BM-MSC Early 
Phase -I 60 Transplantation Recruiting

3 NCT00955669 BM-MSC/ MNC 40 Transplantation Completed 

4 NCT02619877 Allogenic AMSC: Phase-II 59 Topical Completed

5 NCT03865394 Autologous AMSC Phase I & II 20 Topical Recruiting

6 NCT03267784 Allogenic ABCB-5 positive 
MSCs Phase I & II 37 Topical Recruiting 

7 NCT02672280 UC-MSC Phase I & II 30 Topical Unknown

8 NCT01686139 Allogenic BM-MSC 12 Topical and intramuscular  Unknown

9 Autologous bio graft BM-MSC case study Unknown Topical Unknown

10 Autologous BM derived cells: 
randomized control studies BM-MSC case study 48 Topical and intra  muscular CTRI / 2009/ 

091/ 000250
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methods, perhaps leading to more effective diabetic wound 
healing therapies.
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