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Abstract
Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly 
used drugs in the world. The widespread use of NSAIDs is associated with a number of serious 
side effects and complications observed for both selective and non-selective COX inhibitors. 
Therefore, the search for new COX inhibitors, which along with their effectiveness will have 
minimal side effects, is a very important and urgent task. 
Methods: This work studied the synthesis of new 1,4,5,6-tetrahydropyrimidine-2-
carboxamides based on the reaction of 2-morpholin-4-yl-N-(het)aryl-2-thioxoacetamides with 
1,3-diaminopropane. All obtained compounds were tested for anti-inflammatory activity in vivo 
and in silico conditions. All synthesized 1,4,5,6-tetrahydropyrimidine-2-carboxamides were 
tested for influence on the course of the exudative phase of the inflammatory process based on 
the carrageenan model of paw edema of laboratory nonlinear heterosexual white rats weighing 
220-250 g, using Diclofenac as a reference. Optimization of the geometry of the studied 
structures and molecular docking was carried out using the ArgusLab 4.0.1 software package.
Results: The target products were obtained with yields of 71-98% and easily isolated from the 
reaction mixture. The best anti-inflammatory activity was found in N-(4-chlorophenyl)-1,4,5,6-
tetrahydropyrimidine-2-carboxamide and in N-[4-chloro-3-(trifluoromethyl)phenyl]-1,4,5,6-
tetrahydropyrimidine-2-carboxamide, suppression of the inflammatory response was 46.7% 
and 46.4%, respectively. The results of molecular docking with COX-1 and COX-2 enzymes 
were in good agreement with the experimental data, R2 > 0.92 and R2 > 0.83, respectively.
Conclusion: The compounds under study were shown to be promising as potential anti-
inflammatory agents.
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Introduction 
Nonsteroidal anti-inflammatory drugs (NSAIDs) are 
among the most commonly used drugs in the world.1 Their 
anti-ability to alleviate the symptoms of inflammation and 
pain is usually due to the inhibition of cyclooxygenases 
(COX) - enzymes involved in the synthesis of 
prostanoids.2,3 COX-14,5 and COX-26 isoforms of the 
enzyme form the greatest interest as biological targets for 
NSAIDs. COX-1 is a constitutive enzyme, that is, it works 
almost constantly and performs physiologically important 
functions,7 while COX-2 is an inducible enzyme, that is, 
it begins to function in certain situations.7The widespread 
use of NSAIDs is associated with a number of serious side 
effects and complications observed for both selective and 
non-selective COX inhibitors.8 Therefore, the search for 
new COX inhibitors, which along with their effectiveness 
will have minimal side effects, is a very important 

and urgent task. Work is underway to find potential 
NSAIDs among substances of natural origin,9 as well 
as synthetic derivatives of azepine,10 benzimidazole,11,12 
triazole,13-15 1,3,4-oxadiazole,16-20 xanthone,21 coumarin,22-24 
quinazoline,25,26 pyrrolidinone,27,28 pyrrolisine,29 
pyrazole,30-32 1,3-thiazole,33 pyridazine,34 and other cyclic 
and acyclic systems.35 Recently, pyrimidine derivatives 
have been of increasing interest as potential COX 
inhibitors.36 Usually, they exhibit anti-inflammatory 
and analgesic activity in vivo,37-46 and also give good 
results in in silico studies.47,48 This work is devoted to the 
synthesis and study of the anti-inflammatory properties 
of 1,4,5,6-tetrahydropyrimidine-2-carboxamides. It 
should be noted that this class of amides is practically 
unexplored, methods for their preparation have not been 
developed and nothing is known about their biological 
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activity either. At the same time, derivatives of 6-oxo-
1,4,5,6-tetrahydropyrimidine-2-carboxylic acid and 
compounds obtained by transformation of the 6-oxo 
group in their structure as well as condensed analogues 
based on them are well studied. In particular, they are 
inhibitors of various enzymes,49,50 exhibit antimicrobial51,52 
and anti-inflammatory properties.53  These facts indicate 
a high pharmacological potential of the compounds of 
1,4,5,6-tetrahydropyrimidine series, and therefore, further 
research in this direction is an urgent and promising task.

Materials and Methods
Materials
All starting materials were purchased from Merck and 
used without purification. NMR spectra were determined 
with «Varian Mercury VX-400 », (400 MHz and 100 

MHz) spectrometer, in DMSO-d6. Melting points were 
determinated in open capillary tubes and are uncorrected. 
MS (ESI) spectra were recorded on an LC-MS system - 
HPLC Agilent 1100 (Agilent Technologies Inc., Santa, 
Clara, CA USA) equipped with a diode array detector 
Agilent LC\MSD SL. Parameters of analysis: Zorbax SB - 
C18 column (1.8 μm, 4.6-15 mm, PN 821975-932), solvent 
water – acetonitrile mixture (95:5), 0.1% of aqueous 
trifluoroacetic acid; eluent flow 3 mL/min; injection volume 
1 μL. IR spectra were recorded on a Vertex 70 Bruker” 
(Bruker, Karlsruhe.,Germany) spectrometer in KBr pellets.

Methods
The general procedure for the preperation of 2-morpholin-
4-yl-N-(het)aryl-2-thioxoacetamides 2a-k, 6a,b
A suspension of 0.009 mol of crushed sulfur in 9 mL of 
morpholine was stirred for 5 minutes. A solution of 0.003 
mol of the corresponding chloroacetamide 1a-k or 5a, b in 
3 mL of DMF was added in portions to the formed cherry-
brown solution. The reaction mixture was continued to stir 
for 60 minutes, and then it was poured into 100 mL of water 
and left for 1 day. The precipitate formed was filtered off, 
washed with water, dried and recrystallized from alcohol.

2-Morpholin-4-yl-N-phenyl-2-thioxoacetamide (2a). 
White crystals; yield 0.41g (55%); mp 168-170°C; IR (cm-

1): 3313.55 (NH), 1655.81 (C=O), 1599.88 (C=S). 1H NMR 
(400 MHz, DMSO-d6): δ = 3.69 (s, 4H, morpholine), 
3.74 – 3.79 (m, 2H, morpholine ), 4.07 – 4.17 (m, 2H, 
morpholine), 7.11 (t, J = 7.4 Hz, 1H, C6H5), 7.34 (t, J = 7.9 
Hz, 2H, C6H5), 7.62 (d, J = 7.7 Hz, 2H, C6H5), 10.50 – 10.82 
(br.s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): δ = 46.94, 
52.07, 65.42, 65.96, 119.55, 124.06, 128.83, 138.10, 162.93, 
191.06. LC-MS (ESI) [m/z]: [M + H]+ = 251.0; [M − H]− = 
249.2. Anal. Calcd. for C12H14N2O2S: C, 57.58; H, 5.64; N, 
11.19. Found: C, 57.34; H, 5.79; N, 11.24.

N-(3-Methylphenyl)-2-morpholin-4-yl-2-thioxoacetamide 
(2b). 
White crystals; yield 0.69g (87%); mp 111-112°C; IR (cm-

1): 3327.05 (NH), 1666.42 (C=O), 1615.31 (C=S). 1H NMR 
(400 MHz, DMSO-d6): δ = 2.28 (s, 1H, 2H, CH3), 3.67 (s, 
4H, morpholine), 3.72 – 3.79 (m, 2H, morpholine), 4.08 – 
4.15 (m, 2H, morpholine), 6.93 (d, J = 7.5 Hz, 1H, C6H4), 
7.21 (t, J = 7.8 Hz, 1H, C6H4), 7.38 (d, J = 8.2 Hz, 1H, C6H4), 
7.47 (s, 1H, C6H4), 10.55 (s, 1H, NH). 13C NMR (100 MHz, 
DMSO-d6): δ = 21.14, 46.90, 52.06, 65.42, 65.94, 116.76, 
120.02, 124.75, 128.67, 138.01, 138.11, 162.92, 191.05. LC-
MS (ESI) [m/z]: [M + H]+ = 265.0; [M − H]− = 263.0. Anal. 
Calcd. for C13H16N2O2S: C, 59.07; H, 6.10; N, 10.60. Found: 
C, 59.18; H, 6.01; N, 10.49.

N-(4-Methylphenyl)-2-morpholin-4-yl-2-thioxoacetamide 
(2c). 
White crystals; yield 0.63g (79%); mp 180-182°C; IR (cm-

1): 3274.01 (NH), 1647.13 (C=O), 1597.95 (C=S). 1H NMR 
(400 MHz, DMSO-d6): δ = 2.26 (s, 3H, CH3), 2.48 – 2.52 
(m, 4H, morpholine), 3.73 – 3.78 (m, 2H, morpholine), 
4.09 – 4.15 (m, 2H, morpholine), 7.14 (d, J = 8.4 Hz, 2H, 
C6H4), 7.50 (d, J = 8.4 Hz, 2H, C6H4),  10.49 (s, 1H, NH). 
13C NMR (100 MHz, DMSO-d6): δ = 20.46, 46.91, 52.06, 
65.43, 65.96, 119.51, 133.09, 135.59, 162.78 191.14. LC-MS 
(ESI) [m/z]: [M + H]+ = 265.0; [M − H]− = 263.0. Anal. 
Calcd. for C13H16N2O2S: C, 59.07; H, 6.10; N, 10.60. Found: 
C, 59.01; H, 6.17; N, 10.51.

N - ( 3 , 4 - D i m e t hy l p h e ny l ) - 2 - m o r p h o l i n - 4 - y l - 2 -
thioxoacetamide (2d). 
White crystals; yield 0.65g (78%); mp 140-142°C; IR (cm-

1): 3311.62 (NH), 1667.38 (C=O), 1618.2 (C=S). 1H NMR 
(400 MHz, DMSO-d6): δ = 2.17 (s, 3H, CH3), 2.19 (s, 
3H, CH3), 3.67 (s, 4H, morpholine), 3.71 – 3.77 (m, 2H, 
morpholine), 4.07 – 4.14 (m, 2H, morpholine), 7.08 (d, J 
= 8.2 Hz, 1H, C6H3), 7.31 (dd, J = 8.1, 1.8 Hz, 1H, C6H3), 
7.40 (s, 1H, C6H3), 10.46 (s, 1H, NH). 13C NMR (100 MHz, 
DMSO-d6): δ = 18.80, 19.57, 46.90, 52.03, 65.42, 65.93, 
117.09, 120.69, 129.62, 131.90, 135.78, 136.50, 162.77, 
191.22. LC-MS (ESI) [m/z]: [M + H]+ = 279.2; [M − H]− = 
277.2. Anal. Calcd. for C14H18N2O2S: C, 60.41; H, 6.52; N, 
10.06. Found: C, 60.53; H, 6.43; N, 10.12.

N-(4-Fluorophenyl)-2-morpholin-4-yl-2-thioxoacetamide 
(2e). 
Yellow crystals; yield 0.52g (64%); mp 168-170°C; IR (cm-

1): 3254.72 (NH), 1649.06 (C=O), 1614.34 (C=S). 1H NMR 
(400 MHz, DMSO-d6): δ = 3.68 (s, 4H, morpholine), 3.71 – 
3.77 (m, 2H, morpholine), 4.09 – 4.15 (m, 2H, morpholine), 
7.19 (t, J = 8.9 Hz, 1H, C6H4), 7.64 (dd, J = 9.1, 5.0 Hz, 2H, 
C6H4), 10.71 (s, 1H). 13C NMR (100 MHz, DMSO-d6): δ = 
46.93, 52.08, 65.43, 65.99, 115.48 (d, J = 22.4 Hz), 121.36 
(d, J = 8.0 Hz), 134.46 (d, J = 2.5 Hz),158.44 (d, J = 240,8 
Hz), 162.83. 190.82. LC-MS (ESI) [m/z]: [M + H]+ = 269.2; 
[M − H]− = 267.2. Anal. Calcd. for C12H13FN2O2S: C, 53.72; 
H, 4.88; N, 10.44. Found: C, 53.84; H, 4.96; N, 10.31.

N-(3-Chlorophenyl)-2-morpholin-4-yl-2-thioxoacetamide 
(2f). 
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White crystals; yield 0.74g (87 %); mp 135-137°C; IR (cm-

1): 3323.19 (NH), 1670.2 (C=O), 1596.98 (C=S). 1H NMR 
(400 MHz, DMSO-d6): δ = 3.69 (s, 4H, morpholine), 3.76 (t, 
J = 4.9 Hz, 2H, morpholine), 4.09 – 4.15 (m, morpholine), 
7.17 (dd, J = 7.8, 1.8 Hz, 1H, C6H4), 7.37 (t, J = 8.1 Hz, 
1H, C6H4), 7.50 (d, J = 8.2 Hz, 1H, C6H4), 7.80 (t, J = 2.0 
Hz, 1H, C6H4), 10.78 (s, 1H, NH). 13C NMR (100 MHz, 
DMSO-d6): δ = 46.93, 52.11, 65.43, 66.01, 118.02, 119.03, 
123.82, 130.59, 133.13, 139.52, 163.06, 190.37. LC-MS (ESI) 
[m/z]: [M + H]+ = 285.0; [M − H]− = 283.0. Anal. Calcd. for 
C12H13ClN2O2S: C, 50.61; H, 4.60; N, 9.84. Found: C, 50.70; 
H, 4.55; N, 9.88.

N-(4-Chlorophenyl)-2-morpholin-4-yl-2-thioxoacetamide 
(2g). 
White crystals; yield 0.63g (74%); mp 184-186°C; IR (cm-

1): 3298.12 (NH), 1651.95 (C=O), 1604.7 (C=S). 1H NMR 
(400 MHz, DMSO-d6): δ = 3.68 (s, 4H, morpholine). 3.72 - 
3.80 (m, 2H, morpholine), 4.08 - 4.15 (m, 2H, morpholine), 
7.41 (d, J = 8.9 Hz, 2H, C6H4), 7.65 (d, J = 8.9 Hz, 2H, C6H4), 
10.81 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): δ = 
46.96, 52.09, 65.42, 65.98, 121.14, 127.75, 128.75, 162.93, 
190.68. LC-MS (ESI) [m/z]: [M + H]+ = 285.0; [M − H]− = 
283.0. Anal. Calcd. for C12H13ClN2O2S: C, 50.61; H, 4.60; N, 
9.84. Found: C, 50.55; H, 4.67; N 9.79.

N - ( 3 , 4 - D i c h l o r o p h e n y l ) - 2 - m o r p h o l i n - 4 - y l - 2 -
thioxoacetamide (2h). 
Light yellow crystals; yield 0.88g (92%); mp 188-190°C; IR 
(cm-1): 3331.87 (NH), 1678.95 (C=O), 1589.27 (C=S). 1H 
NMR (400 MHz, DMSO-d6): δ = 3.68 (s, 4H, morpholine), 
3.72 – 3.79 (m, 2H, morpholine), 4.09 – 4.14 (m, 2H, 
morpholine), 7.53 (dd, J = 8.8, 2.4 Hz, 1H, C6H3), 7.61 (d, 
J = 8.8 Hz, 1H, C6H3), 7.99 (d, J = 2.3 Hz, 1H, C6H3), 10.97 
(s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): δ =  46.95, 
52.13, 65.43, 66.03, 119.66, 120.80, 125.66, 130.80, 131.09, 
138.16, 163.03. LC-MS (ESI) [m/z]: [M + H]+ = 319.0. 
Anal. Calcd. for C12H12Cl2N2O2S: C, 45.15; H, 3.79; N, 8.78. 
Found: C, 45.02; H, 3.84; N, 8.69.

N-(4-Bromophenyl)-2-morpholin-4-yl-2-thioxoacetamide 
(2i). 
White crystals; yield 0.84g (85%); mp 190-192°C; IR (cm-

1): 3298.12 (NH), 1652.92 (C=O), 1601.8 (C=S). 1H NMR 
(400 MHz, DMSO-d6): δ = 3.67 (s, 4H, morpholine), 
3.73 - 3.77 (m, 2H, morpholine), 4.08 - 4.14 (m, 2H, 
morpholine), 7.53 (d, J = 8.9 Hz, 2H, C6H4), 7.59 (d, J = 8.9 
Hz, 2H, C6H4), 10.79 (s, 1H, NH).  13C NMR (100 MHz, 
DMSO-d6): δ =  46.92, 52.10, 65.43, 65.98, 115.81, 121.45, 
131.68, 137.49, 162.92, 190.55. LC-MS (ESI) [m/z]: [M + 
H]+ = 329.0. Anal. Calcd. for C12H13BrN2O2S: C, 43.78; H, 
3.98; N, 8.51. Found: C, 43.72; H, 4.03; N, 8.56.

N-[3-Chloro-4-(trifluoromethyl)phenyl]-2-morpholin-4-yl-
2-thioxoacetamide (2j). 
Light yellow crystals; yield 0.96g (91%); mp 178-180°C; 
IR (cm-1): 3325.12 (NH), 1677.99 (C=O), 1612.41 (C=S). 

1H NMR (400 MHz, DMSO-d6): δ = 3.64 – 3.69 (m, 2H, 
CH2, morpholine), 3.69 – 3.74 (m, 2H, CH2, morpholine), 
3.74 – 3.78 (m, 2H, CH2, morpholine), 4.10 – 4.15 (m, 2H, 
CH2, morpholine), 7.72 (d, J = 8.8 Hz, 1H, C6H3), 7.87 (dd, 
J = 8.8, 2.4 Hz, 1H, C6H3), 8.21 (d, J = 2.5 Hz, 1H, C6H3), 
11.14 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): δ = 
47.00, 52.15, 65.43, 66.05, 118.32 (q, J = 5.7 Hz), 122.61 
(q, J = 273.1 Hz), 124.41, 124.91 (q, J = 1.7 Hz), 126.80 (q, 
J = 30.8 Hz), 132.24, 137.61, 163.10, 190.01. LC-MS (ESI) 
[m/z]: [M + H]+ = 353.2; [M − H]− = 351.0. Anal. Calcd. 
for C13H12ClF3N2O2S: C, 44.26; H, 3.43; N, 7.94. Found: C, 
44.33; H, 3.31; N 8.02.

4-{[Morpholin-4-yl(thioxo)acetyl]amino}benzoic acid (2k). 
White crystals; yield 0.71g (80%); mp 237-238°C; IR (cm-

1): 3226.75 (NH), 1720.42 (C=O), 1645.2 (C=O), 1597.95 
(C=S). 1H NMR (400 MHz, DMSO-d6): δ = 3.69 (s, 4H, 
CH2, morpholine). 3.73 – 3.79 (m, 2H, morpholine), 4.09 
– 4.16 (m, 2H, morpholine), 7.74 (d, J = 8.7 Hz, 2H, C6H4), 
7.93 (d, J = 8.7 Hz, 2H, C6H4), 10.98 (s, 1H, NH), 12.39 – 
13.16 (br. s, 1H, COOH). 13C NMR (100 MHz, DMSO-d6): δ 
= 46.91, 52.13, 65.41, 65.96, 118.91, 125.94, 130.42, 142.13, 
163.10, 166.76, 190.36. LC-MS (ESI) [m/z]: [M+ H]+ = 
295.0; [M − H]− = 293.0. Anal. Calcd. for C13H14N2O4S: C, 
53.05; H, 4.79; N, 9.52. Found: C, 53.11; H, 4.70; N, 9.58.

N-[5-(4-Chlorobenzyl)-thiazol-2-yl]-2-morpholin-4-yl-2-
thioxoacetamide (6а). 
White crystals; yield 0.96g (84%); mp 238-240°C; IR (cm-

1): 3173.71 (NH), 1669.31 (C=O), 1574.8 (C=S). 1H NMR 
(400 MHz, DMSO-d6): δ = 3.58 (s, 2H, morpholine), 
3.64 (s, 2H, CH2), 3.73 (s, 2H, morpholine), 4.07 (s, 2H, 
morpholine), 4.10 (s, 2H, ArCH2), 7.26 – 7.34 (m, 3H, 
thiazole, C6H4), 7.36 (d, J = 8.2 Hz, 2H, C6H4), 12.65 (s, 1H, 
NH). 13C NMR (100 MHz, DMSO-d6): δ = 30.87, 46.91, 
52.19, 65.27, 65.79, 128.48, 130.21, 131.84, 134.69, 139.23, 
156.50, 162.57, 189.06. LC-MS (ESI) [m/z]: [M + H]+ = 
382.0; [M − H]− = 380.0. Anal. Calcd. for C16H16ClN3O2S2: 
C, 50.32; H, 4.22; N, 11.00. Found: 50.39; H, 4.13; N, 10.91.

N-[5-(4-Bromobenzyl)-thiazol-2-yl]-2-morpholin-4-yl-2-
thioxoacetamide (6b). 
White crystals; yield 1.22g (95%); mp 231-233°C; IR (cm-

1): 3171.79 (NH), 1670.27 (C=O), 1573.84 (C=S). 1H NMR 
(400 MHz, DMSO-d6) δ = 3.57 (с, 2H, morpholine), 3.64 
(d, J = 3.2 Hz, 2H, morpholine), 3.73 (s, 2H, morpholine), 
4.08 (s, 2H, morpholine), 4.09 (s, 2H, ArCH2), 7.17 – 7.27 
(d, J = 8.3 Hz, 2H, C6H4), 7.33 (s, 1H, thiazole), 7.46 – 7.57 
(d, J = 8.4 Hz, 2H, C6H4), 12.52 – 12.78 (br.s, 1H, NH). 
13C NMR (100 MHz, DMSO-d6): δ = 31.20, 46.91, 52.19, 
65.27, 65.79, 119.56, 130.60, 131.41, 131.76, 139.62, 189.06. 
LC-MS (ESI) [m/z]: [M + H]+ = 426.0; [M − H]− = 424.0. 
Anal. Calcd. for C16H16BrN3O2S2: C, 45.07; H, 3.78; N, 9.86. 
Found: C, 45.18; H, 3.84; N, 9.78.

The general procedure for the preperation of 
1,4,5,6-tetrahydropyrimidine-2-carboxamides 3a-k, 7a,b
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Four mL of 1,3-diaminopropane were added to 0.0015 
mol of the corresponding morpholin-4-yl-N-(het)aryl-2-
thioxoacetamide 2a-k or 6a, b and stirred for 5 minutes 
at room temperature. The resulting solution was heated 
to 50°C and continued stirring for 40-50 minutes at that 
temperature. Then, it was cooled, poured into 30 mL of 
water and left for 1 day. The precipitate was filtered off, 
washed with water, dried and recrystallized from alcohol 
(3k, 7a, b) or diluted alcohol (3a-j).

N-Phenyl-1,4,5,6-tetrahydropyrimidine-2-carboxamide 
(3а). White crystals; yield 0.27g (89%); mp 131-133°C; IR 
(cm-1): 3266.29 (NH), 1673.17 (C=O), 1629.77 (C=N). 1H 
NMR (400 MHz, DMSO-d6): δ = 1.57 – 1.88 (m, 2H, CH2), 
3.32 (t, J = 5.6 Hz, 4H, CH2), 7.08 (t, J = 7.4 Hz, 1H, C6H5), 
7.32 (t, J = 7.9 Hz, 2H, C6H5), 7.76 (d, J = 8.3 Hz, 2H, C6H5). 
13C NMR (100 MHz, DMSO-d6): δ = 19.76, 40.91, 119.74, 
123.70, 128.63, 137.92, 147.98, 159.91. LC-MS (ESI) [m/z]: 
[M + H]+ = 204.2 Anal. Calcd. for C11H13N3O: C, 65.01; H, 
6.45; N, 20.67. Found: C, 65.12; H, 6.49; N, 20.74.

N-(3-Methylphenyl)-1,4,5,6-tetrahydropyrimidine-2-
carboxamide (3b). 
White crystals; yield 0.23g (71%); mp 115-117°C; IR (cm-

1): 3374.3 (NH), 1671.24 (C=O), 1631.7 (C=N). 1H NMR 
(400 MHz, DMSO-d6): δ = 1.61 – 1.70 (m, 2H, CH2), 2.50 
(s, 3H, CH3), 3.32 (t, J = 5.6 Hz, 4H, 2CH2), 6.90 (d, J = 7.4 
Hz, 1H, C6H4), 7.19 (t, J = 7.8 Hz, 1H, C6H4), 7.53 (d, J= 
8.2 Hz, 1H, C6H4), 7.59 (s, 1H, C6H4). 13C NMR (100 MHz, 
DMSO-d6): δ = 19.74, 21.15, 40.92, 116.84, 120.14, 124.42, 
128.50, 137.77, 137.88, 147.94, 159.78. LC-MS (ESI) [m/z]: 
[M + H]+ = 218.2. Anal. Calcd. for C12H15N3O: C, 66.34; H, 
6.96; N, 19.34. Found: C, 66.44; H, 7.05; N, 19.27.

N-(4-Methylphenyl)-1,4,5,6-tetrahydropyrimidine-2-
carboxamide (3c). 
White crystals; yield 0.31g (95%); mp 137-139°C; IR (cm-1): 
3357.91 (NH), 1689.56 (C=O), 1636.52 (C=N). 1H-NMR 
(400 MHz, DMSO-d6): δ = 1.59 – 1.70 (m, 2H, CH2), 2.25 
(s, 3H, CH3 ), 3.31 (t, J = 5.6 Hz, 4H, 2 CH2), 7.11 (d, J = 
8.3 Hz, 2H, C6H4), 7.63 (d, J = 8.3 Hz, 2H, C6H4). 13C NMR 
(100 MHz, DMSO-d6): δ = 19.76, 20.43, 40.86, 119.66, 
129.03, 132.69, 135.40, 147.98, 159.72. LC-MS (ESI) [m/z]: 
[M + H]+ = 218.2. Anal. Calcd. for C12H15N3O: C, 66.34; H, 
6.96; N, 19.34. Found: C, 66.25; H, 7.01; N, 19.42.

N-(3,4-dimethylphenyl)-1,4,5,6-tetrahydropyrimidine-2-
carboxamide (3d). 
White crystals; yield 0.33g (94%); mp 129-131°C; IR (cm-

1): 3279.79 (NH), 1673.17 (C=O), 1632.66 (C=N). 1H NMR 
(400 MHz, DMSO-d6): δ = 1.48 – 1.83 (m, 2H, CH2), 2.16 (s, 
3H, CH3), 2.18 (s, 3H, CH3), 3.31 (t, J = 5.6 Hz, 4H, 2CH2), 
7.06 (d, J = 8.2 Hz, 1H, C6H3), 7.46 (d, J = 8.1 Hz, 1H, C6H3), 
7.51 (s, 1H, C6H3). 13C NMR (100 MHz, DMSO-d6): δ = 
18.73, 19.54, 19.75, 40.87, 117.06, 120.76, 129.52, 131.57, 
135.50, 136.32, 148.00, 159.56. LC-MS (ESI) [m/z]: [M + 
H]+ = 232.2. Anal. Calcd. for C13H17N3O: C, 67.51; H, 7.41; 

N, 18.17. Found: C, 67.63; H, 7.32; N, 18.29.

N-(4-f luorophenyl)-1,4,5,6-tetrahydropyrimidine-2-
carboxamide (3e). 
White crystals; yield 0.29g (88%); mp 116-117°C; IR (cm-

1): 3252.79 (NH), 1677.99 (C=O), 1632.66 (C=N). 1H NMR 
(400 MHz, DMSO-d6): δ = 1.52 – 1.73 (m, 2H, CH2), 3.32 
(t, J = 5.6 Hz, 4H, CH2), 7.15 (t, J = 8.9 Hz, 2H, C6H4), 7.79 
(dd, J = 8.6, 5.2 Hz, 2H, C6H4), 8.69 (s, 1H, NH). 13C NMR 
(100 MHz, DMSO-d6): δ = 19.74, 40.88, 115.14 (d, J = 22.2 
Hz), 121.69 (d, J = 7.8 Hz), 134.55 (d, J = 2.5 Hz), 147.99, 
158.25 (d, J = 240.4 Hz), 159.92. LC-MS (ESI) [m/z]: [M 
+ H]+ = 222.2. Anal. Calcd. for C11H12FN3O: C, 59.72; H, 
5.47; N, 18.99. Found: C, 59.85; H, 5.41; N, 19.12.

N-(3-Chlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-
carboxamide (3f). 
White crystals; yield 0.34g (96%); mp 118-119°C; IR (cm-

1): 3375.27 (NH), 1675.1 (C=O), 1635.56 (C=N). 1H NMR 
(400 MHz, DMSO-d6): δ = 1.52 –1.85 (m, 2H, CH2), 3.32 
(t, J =5.6 Hz, 4H, 2CH2), 7.12 (d, J = 8.0 Hz, 1H, C6H4), 
7.33 (t, J = 8.1 Hz, 1H, C6H4), 7.71 (d, J = 8.3 Hz, 1H, 
C6H4), 7.96 (s, 1H, C6H4), 8.84 (br.s, 1H). 13C NMR (100 
MHz, DMSO-d6): δ = 19.64, 40.48, 118.59, 119.52, 123.23, 
130.19, 132.91, 140.09, 148.20, 160.05. LC-MS (ESI) [m/z]: 
[M + H]+ = 238.0. Anal. Calcd. for C11H12ClN3O: C, 55.59; 
H, 5.09; N, 17.68. Found: C, 55.54; H, 5.03; N, 17.73.

N-(4-Chlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-
carboxamide (3g). 
White crystals; yield 0.35g (98%); mp 158-159°C; IR (cm-

1): 3358.87 (NH), 1690.53 (C=O), 1637.49 (C=N). 1H NMR 
(400 MHz, DMSO-d6): δ = 1.58 – 1.78 (m, 2H, CH2), 3.33 
(t, J = 5.7 Hz, 4H, CH2), 7.36 (d, J = 8.9 Hz, 2H, C6H4), 7.80 
(d, J = 8.9 Hz, 2H, C6H4),  8.90 (br.s, 1H, NH). 13C NMR 
(100 MHz, DMSO-d6): δ = 19.68, 40.84, 121.54, 127.26, 
128.46, 137.27, 148.04, 160.02. LC-MS (ESI) [m/z]: [M + 
H]+ = 238.0. Anal. Calcd. for C11H12ClN3O: C, 55.59; H, 
5.09; N, 17.68. Found: C, 55.64; H, 5.11; N, 17.63.

N-(3,4-Dichlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-
carboxamide (3h). 
White crystals; yield 0.39g (96%); mp 161-163°C; IR (cm-

1): 3370.44 (NH), 1698.24 (C=O), 1643.27 (C=N). 1H NMR 
(400 MHz, DMSO-d6): δ = 1.52 – 1.85 (m, 2H, CH2). 3.32 
(t, J = 5.6 Hz, 4H, 2CH2), 7.12 (d, J = 8.0 Hz, 1H, C6H3), 
7.33 (t, J = 8.1 Hz, 1H, C6H3), 7.71 (d, J = 8.3 Hz, 1H, 
C6H3), 7.96 (s, 1H, C6H3), 8.84 (s, 1H, NH). 13C NMR (100 
MHz, DMSO-d6): δ = 19.30, 40.39, 120.79, 121.78, 124.59, 
130.31, 130.68, 140.21, 149.20, 159.45. LC-MS (ESI) [m/z]: 
[M + H]+ = 272.0. Anal. Calcd. for C11H11Cl2N3O: C, 48.55; 
H, 4.07; N, 15.44. Found: C, 48.64; H, 3.97; N, 15.30.

N-(4-Bromophenyl)-1,4,5,6-tetrahydropyrimidine-2-
carboxamide (3i). 
White crystals; yield 0.35g (83%); mp 157-158°C; IR (cm-

1): 3357.91 (NH), 1692.45 (C=O), 1636.52 (C=N). 1H NMR 
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(400 MHz, DMSO-d6): δ = 1.52 – 1.77 (m, 2H, CH2). 3.31 
(t, J = 5.6 Hz, 4H, 2 CH2), 7.49 (d, J = 8.8 Hz, 2H, C6H4), 
7.76 (d, J = 8.8 Hz, 2H, C6H4),  8.80 (br.s, 1H, NH). 13C 
NMR (100 MHz, DMSO-d6): δ = 19.67, 40.82, 115.35, 
121.94, 131.37, 137.72, 148.08, 160.02. LC-MS (ESI) [m/z]: 
[M + H]+ = 284.0. Anal. Calcd. for C11H12BrN3O: C, 46.83; 
H, 4.29; N, 14.89. Found: C, 46.89; H, 4.33; N, 14.94.

N-[4-chloro-3-( tr i f luoromethyl )phenyl] -1 ,4 ,5 ,6-
tetrahydropyrimidine-2-carboxamide (3j). 
White crystals; yield 0.40g (88%); mp 141-143°C; IR (cm-

1): 3286.54 (NH), 1684.74 (C=O), 1634.59 (C=N). 1H NMR 
(400 MHz, DMSO-d6): δ = 1.65 – 1.81 (m, 2H, CH2), 3.34 
(t, J = 5.7 Hz, 4H, CH2), 7.61 (d, J = 8.8 Hz, 1H, C6H3), 
8.03 (dd, J = 8.8, 2.4 Hz, 1H, C6H3), 8.34 (d, J = 2.4 Hz, 
1H, C6H3), 8.81 – 9.36 (br.s, 1H, NH). 13C NMR (100 MHz, 
DMSO-d6): δ = 19.25, 40.26, 119.74 (q, J = 5.6 Hz), 122.82 
(q, J = 273.0 Hz), 123.41 (q, J = 1.8 Hz) , 125.71, 126.43 (q, 
J = 30.7 Hz), 131.62, 140.52, 149.71, 159.38. LC-MS (ESI) 
[m/z]: [M + H]+ = 306.0. Anal. Calcd. for C12H11ClF3N3O: 
C, 47.15; H, 3.63; N, 13.75. Found: C, 47.24; H, 3.56; N, 
13.64.

4-[(1,4,5,6-Tetrahydropyrimidin-2-ylcarbonyl)amino]
benzoic acid (3k). 
White crystals; yield 0.36g (96  %); mp > 260°C; IR (cm-

1): 3410.95 (OH), 3303.9 (NH), 1708.85 (C=O), 1666.42 
(C=O), 1608.56 (C=N). 1H NMR (400 MHz, DMSO-d6): 
δ = 1.93 (s, 2H, CH2). 3.50 (s, 4H, 2CH2), 7.36 (d, J = 7.6 
Hz, 2H, C6H4), 7.80 (d, J = 7.6 Hz, 2H, C6H4), 11.45 – 11.52 
(br.s, 1H, СООН). 13C NMR (100 MHz, DMSO-d6): δ = 
16.87, 38.36, 119.91, 127.22, 130.34, 141.02, 152.02, 154.55, 
166.63. LC-MS (ESI) [m/z]: [M + H]+ = 248.2; [M − H]− 
= 246.0. Anal. Calcd. for C12H13N3O3: C 58.29, H 5.30, N 
16.99; Found C 58.36, H 5.27, N 16.91.

N-[5-(4-Chlorobenzyl)-1,3-thiazol-2-yl]-1,4,5,6-
tetrahydropyrimidine-2-carboxamide (7а). 
Light yellow crystals; yield 0.42g (84%); mp 252-254°C; IR 
(cm-1): 3161.18 (NH), 1667.38 (C=O), 1567.09 (C=N). 1H 
NMR (400 MHz, DMSO-d6): δ = 1.83 (s, 2H, CH2), 3.35 
(s, 4H, 2CH2), 4.01 (s, 2H, ArCH2), 7.12 (s, 1H, thiazole), 
7.26 (d, J = 8.2 Hz, 2H, C6H4), 7.34(d, J = 8.2 Hz, 2H, C6H4), 
9.50 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): δ = 
17.64, 32.21, 38.15, 128.24, 128.90,  130.16, 130.64, 135.27, 
140.03, 155.27, 156.25, 167.88. LC-MS (ESI) [m/z]: [M + 
H]+ = 335.0. Anal. Calcd. for C15H15ClN4OS: C, 53.81; H, 
4.52; N, 16.73. Found: C, 53.93; H, 4.46; N, 16.79.

N-[5-(4-Bromobenzyl)-1 ,3-thiazol-2-yl]-1 ,4 ,5 ,6-
tetrahydropyrimidine-2-carboxamide (7b). 
Light yellow crystals; yield 0.48g (85%); mp 243-245°C; IR 
(cm-1): 3162.14 (NH), 1667.38 (C=O), 1567.09 (C=N). 1H 
NMR (400 MHz, DMSO-d6): δ = 1.83 (s, 2H, CH2), 3.35 
(s, 4H, 2CH2), 4.00 (s, 1H), 7.11(s, 1H, thiazole), 7.20 (d, 
J = 8.4 Hz, 2H, C6H4), 7.48 (d, J = 8.4 Hz, 2H, C6H4), 9.45 
(s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): δ = 17.64, 

32.27, 38.15, 119.09, 128.81, 130.56, 131.16, 135.33, 140.47, 
155.27, 156.25, 167.89. LC-MS (ESI) [m/z]: [M + H]+ = 
379.0. Anal. Calcd. for C15H15BrN4OS: C, 47.50; H, 3.99; N, 
4.77. Found: C, 47.41; H, 4.04; N, 4.84.

Biological activity
The effect of the synthesized substances on the course of the 
exudative phase of the inflammatory process was studied 
on the basis of the carrageenan model of the paw edema 
of non-linear heterosexual white rats weighing 220-250 g, 
against the background of the reference anti-inflammatory 
drug Diclofenac. The animals were divided into 14 groups, 
five rats each. One group was kept as a control, and the 
remaining 13 (test groups) were used to determine the 
anti-inflammatory activity exhibited by Diclofenac and 
another 12 test substances. Before the experiment, the rats 
were kept in an animal shelter under standard lighting and 
temperature conditions, on a standard diet. The reference 
anti-inflammatory drug Diclofenac, at a therapeutic dose 
of 10 mg/kg, and the test substances, at a dose of 50 mg/
kg body weight, were administered intraperitoneally to 
the animals of only test groups in the form of a suspension 
with tween 80. Thirty minutes later, all animals were 
caused edema by introducing 0.1 mL of a 2% solution 
of carrageenin in saline solution into aseptic conditions 
under the aponeurosis of the sole of the right hind limb of 
the rats. The presence of an inflammatory reaction among 
the animals of the control and test groups was established 
by measuring the volume of their limbs by the oncometric 
method at the beginning of the experiment and 4 hours 
after the administration of the phlogogenic agent. The 
inhibition of the inflammatory reaction was determined by 
the degree of reduction of limb edema among the animals 
of the test groups in comparison with the control one. It 
was calculated according to Eq. 1.

% 100%
V VcontrolInhibition

Vcontrol

−
= ×

   

where Vcontrol is the increase in paw volume in the control 
group animals; V is the increase in paw volume in animals 
injected with the test substances.

Molecular Docking Studies
Ligand preparation
Prior to molecular docking, the structures of all test 
compounds 1-14 were optimized in the semi-empirical PM3 
method54 using the ArgusLab 4.0.1 software package.55-64

Protein preparation
We used a number of different crystal structures of the 
COX-1 and COX-2 enzymes from Protein Data Bank 
for molecular docking studies. The best correlation 
between biological test results and calculated values 
was observed for structures 1EQG65 and 1CX2.66 Three-
dimensional crystal structures of COX-1 enzyme 
cocrystallization and Ibuprofen (PDB ID: 1EQG), as 

Eq.(1)
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well as COX-2 enzyme cocrystallization and inhibitor 
(S58) 4-(5-(4-bromophenyl)-3-(trifluoromethyl)-1H-
pyrazol-1-yl) benzenesulfonamide (PDB ID: 1CX2), were 
downloaded in PDB format from the protein molecule 
database (http://www.rcsb.org). Before docking, the 
molecules of all non-protein components, except for these 
inhibitors and hemes, were removed. Water molecules 
were also removed from the binding site.

Molecular docking procedure
Ligand groups with the name Ligand_X-ray were created 
based on Ibuprofen molecule (COX-1 enzyme), the 
code in the cocrystallizate 701 IBP, and the molecule of 
4-(5-(4-bromophenyl)-3-(trifluoromethyl)-1H-pyrazol-
1-yl) benzenesulfonamide (S58) (COX-2 enzyme), the 
code in cocrystallizate 2238 S58.66 Based on these groups, 
three-dimensional models of binding sites were created, 
the dimensions of which were calculated automatically and 
were for the enzyme COX-1 along the X axis - 17.098000, 
the Y axis - 14.533000 and the Z axis - 18.345000 Å and for 
the enzyme COX-2 along the X axis - 23.613000 , the Y axis 
- 19.421000 and the Z axis - 23.120000 Å, respectively. The 
docking was performed with a flexible ligand. The semi-
empirical AScore function (based on the XScore function67 

was used to calculate the scores. The lattice pitch was set 
at 0.250 Å. Type of calculation - Dock; Docking Engine - 
ArgusLab. Visualization of the results was performed using 
the program PyMOL 0.99rc6.68

Results and Discussion 
The starting materials for the synthesis of the target 
1,4,5,6-tetrahydropyrimidine-2-carboxamides (Table 1) 
were 2-morpholin-4-yl-N-(het)aryl-2-thioxoacetamides 
2a-k, which were obtained by the interaction of 
chloroacetanilides 1a-k (Figure 1) with sulfur and 
morpholine by the method described in a previous work.69 
Their characteristics and 1H NMR spectroscopy data are 
given in the experimental part.
The interaction of morpholin-4-yl-N-(het)aryl-2-
thioxoacetamides 2a-k  (Figure 2) with 1,3-diaminopropane 
was studed. It was found that heating at a temperature of 
50-70°C for 40-50 minutes in 1,3-diaminopropane medium 
was required for the successful interaction. N-aryl-1,4,5,6-
tetrahydropyrimidine-2-carboxamides 3a-k were isolated 
as a result of the reaction with yields of 71-98%.
The 1H NMR spectrum of the resulting product 3a-k 
was in agreement with the given structure. In particular, 
the protons of the CH2 group in the 5th position of the 

Figure 1. Synthesis of N-aryl-1,4,5,6-tetrahydropyrimidine-2-carboxamides 3a-k.

Figure 2. Synthesis of N-hetaryl-1,4,5,6-tetrahydropyrimidine-2-carboxamides 7a,b.

http://www.rcsb.org
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Table 1. Results of anti-inflammatory activity and molecular docking study of N-aryl-1,4,5,6-tetrahydropyrimidine-2-carboxamides 3a-k 
and N-hetaryl-1,4,5,6-tetrahydropyrimidine-2-carboxamides 7a,b.

Comp. Structure Inhibition of the 
inflammatory response, %

ArgusLab 4.01
∆G, kcal/mol

COX-1 COX-2

3a

N

N
H

H
N

O

12.9 -8.2 -9.0

3b

N

N
H

H
N

O

30.2 -10.1 -9.7

3c

N

N
H

H
N

O

15.9 -9.1 -9.2

3d

N

N
H

H
N

O

38.2 -10.8 -10.4

3e

N

N
H

H
N

O
F

26.4 -9.4 -9.5

3f

N

N
H

H
N

O

Cl 41.8 -11.0 -11.0

3g

N

N
H

H
N

O
Cl

46.7 -11.7 -11.2

3h

N

N
H

H
N

O
Cl

Cl
36.0 -9.8 -10.7

3i

N

N
H

H
N

O
Br

8.6 -7.3 -9.2

3j

N

N
H

H
N

O
Cl

F3C
46.4 -11.6 -11.5
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Comp. Structure Inhibition of the 
inflammatory response, %

ArgusLab 4.01
∆G, kcal/mol

COX-1 COX-2

3k

N

N
H

H
N

OHO

O

25.2 -8.7 -9.4

7a

N

N
H

H
N

O

N

S

Cl

37.5 -10.7 -10.6

7b

N

N
H

H
N

O

N

S

Br

29.3 -10.4 -11.0

Diclofenac N
H

Cl

Cl

OH

O
43.6 -10.8 -11.1

pyrimidine cycle appeared at 1.57-1.93 ppm, and the 
protons of the CH2 groups in the 4th and 6th positions - at 
3.32-3.50 ppm.
A method for the synthesis of N-[5-(4-R-benzyl)-
1,3-thiazol-2-yl]-1,4,5,6-tetrahydropyrimidine-2-
carboxamides 7a, b. 5-(4-R-benzyl) thiazol-2-ylamines 
4a, b, were obtained by the described method in a 
previous study.70 By acylation of 4a, b with chloroacetyl 
chloride, the corresponding chloroacetamides 5a, b 
were formed,71 which upon interaction with sulfur and 
morpholine were converted to N-[5-(4-R-benzyl)thiazol-
2-yl]-2-morpholin-4-yl-2-thioxoacetamides 6a, b. By the 
reaction 6a, b with 1,3-diaminopropane according to the 
above procedure, N-[5-(4-R-benzyl)-1,3-thiazol-2-yl]-
1,4,5,6-tetrahydropyrimidine-2-carboxamides 7a, b were 
synthesized.
The effect of synthesized substances on the course of the 
exudative phase of the inflammatory process was studied 
on the basis of the carrageenan model of the paw edema of 
non-linear heterosexual white rats.
The results of the study of anti-inflammatory activity are 
shown in Table 1. It was found that the test substances 
showed different levels of activity. The most active 
compounds were 3g and 3j. Their effect was superior to the 
reference drug Diclofenac. An effect commensurate with 

this drug was observed in compounds 3d, 3f, 3h, 7a. At 
the same time, the antiexudative activity of the remaining 
compounds was somewhat lower than the standard. An 
analysis of the data allowed us to draw some conclusions 
regarding the patterns of “the structure – action” 
relationship in a series of synthesized compounds. The 
introduction of substituents, both electron-donating and 
electron-withdrawing, in the aromatic nucleus always led 
to an increase in antiexudative activity, in comparison with 
basic phenylamide 3a. Comparative characterization of the 
effect of electron-donating methyl substituents in aromatics 
(compounds 3b-d) was in favor of disubstituted 3d relative 
to monosubstituted analogues 3b, c. The transition from 
electron-donating to electron-withdrawing substituents 
(halogen atoms), with rare exceptions (bromine derivative 
3i), was accompanied by an increase in activity. This was 
especially pronounced in the case of chlorine-substituted 
3f, g and the asymmetric dihalogen derivative 3j. It should 
also be noted that in general, chloro derivatives (3f-h) were 
preferable to fluoro and especially bromo derivatives (3e, 
i).
The ability of substances to show anti-inflammatory 
activity is usually associated with the inhibition of COX-1 
and COX-2 enzymes, with which we conducted molecular 
docking studies. The results of the molecular docking 

Table 1. Continued.
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Figure 3. a) linear correlation between the binding energy (kcal/mol) with COX-1 and the rate of suppression of the inflammatory response 
(%); b) linear correlation between the binding energy (kcal/mol) of COX-2 and the rate of suppression of the inflammatory response (%).

Figure 4. Position of molecules of hit compounds in the active sites of COX according to the results of the molecular docking: a) 
N-(4-chlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3g) in the active site of the enzyme COX-1; b) N-(4-chlorophenyl)-
1,4,5,6-tetrahydropyrimidine-2-carboxamide (3g) in the active site of the enzyme COX-2; c) N-[4-chloro-3-(trifluoromethyl)phenyl]-
1,4,5,6-tetrahydropyrimidine-2-carboxamide (3j) in the active site of the enzyme COX-1; d) N-[4-chloro-3-(trifluoromethyl)phenyl]-1,4,5,6-
tetrahydropyrimidine-2-carboxamide (3j) in the active site of the enzyme COX-2. Heme is shown in pink.

were in good agreement with the experimental data (Table 
1, Figure 3), R2 > 0.92 and 0.83 for COX-1 and COX-2, 
respectively. Most likely, compounds 3a-k and 7a, b 
inhibited the activity of both enzymes. According to the 
results of the molecular docking, the most stable complexes 
with active sites of both enzymes formed compounds 
N-(4-chlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-
carboxamide (3g) and N-[4-chloro-3-(trifluoromethyl)

phenyl]-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3j) 
(Figure 4). Compounds 3g and 3j were superior to the 
reference drug Diclofenac in the strength of complexes 
formed with COX-1 and COX-2 (see Table 1).
N-(4-Chlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-
carboxamide (3g) was further fixed in the active site of the 
enzyme COX-1 due to the formation of an intermolecular 
hydrogen bond between the oxygen atom of the amide 
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group and the hydroxyl group of the amino acid Tyr 355, 
the bond length -NHC=O...HO (Tyr 355) was 2.9 Å (Figure 
4a). In turn, in the active site of COX-2, this compound was 
additionally fixed due to the formation of two hydrogen 
bonds with a length of about 3.0 Å, which were formed 
between the amide group and the peptide bonds of amino 
acids Val 523 and Ala 527 (Figure 4b).
N-[4-Chloro-3-(trif luoromethyl)phenyl]-1,4,5,6-
tetrahydropyrimidine-2-carboxamide (3j) was additionally 
fixed in the active sites of the enzymes COX-1 and COX-2 
due to the formation of hydrogen bonds with the hydroxyl 
group of the amino acid Tyr 355. In the case of COX-1, the 
hydrogen bond formed a Nitrogen atom of the pyrimidine 
ring, the bond length N...HO (Tyr 355) was 2.7 Å (Figure 
4c), and in the case of COX-2 – a Nitrogen atom of the 
amide group, the bond length of NH...HO (Tyr 355) was 
2.8 Å (Figure 4d).
It is noteworthy that for N-(3-chlorophenyl)-1,4,5,6-
tetrahydropyrimidine-2-carboxamide (3f), the energies 
of complexes with the enzymes COX-1 and COX-2 were 
practically equal and amounted to about -11.0 kcal/mol.  Most 
likely, this compound could equally inhibit both enzymes.

Conclusion
This work studied the synthesis of new 
1,4,5,6-tetrahydropyrimidine-2-carboxamides based 
on the reaction of 2-morpholin-4-yl-N-(het)aryl-2-
thioxoacetamides with 1,3-diaminopropane. The target 
products were obtained with yields of 71-98% and easily 
isolated from the reaction mixture. All synthesized 
1,4,5,6-tetrahydropyrimidine-2-carboxamides were tested 
for effects on the exudative phase of the inflammatory 
process based on the carrageenan model of paw edema 
of laboratory nonlinear heterosexual white rats weighing 
220-250 g, using Diclofenac as a reference. The best anti-
inflammatory activity was found in N-(4-chlorophenyl)-
1,4,5,6-tetrahydropyrimidine-2-carboxamide and 
N-[4-chloro-3-(trif luoromethyl)phenyl]-1,4,5,6-
tetrahydropyrimidine-2-carboxamide, suppression of the 
inflammatory response was 46.7 and 46.4%, respectively. 
The ability of the synthesized compounds to exhibit 
anti-inflammatory activity was most likely related to the 
inhibition of COX-1 and COX-2 enzymes with which 
molecular docking studies had been performed. The 
results of the molecular docking are in good agreement 
with the experimental data, R2 > 0.92 and 0.83 for COX-1 
and COX-2, respectively.
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