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Abstract Resumen 

Context: Almost one year after the onset of COVID-19 pandemic in 
Wuhan, China and still no specific therapy has emerged, counting 
millions of dead worldwide. The association of an uncontrolled SARS-
CoV-2 replication and host-dependent mechanisms in COVID-19 
pathogenesis suggest that any therapeutic strategy must combine 
antiviral drugs and adjuvant therapy to modulate the host’s responses. 
Owing to the multiplicity of mechanisms involved in COVID-19 
pathogenic expressions, such as severe hypoxia, excessive inflammatory 
reaction and impaired immune response, an emerging therapeutic 
paradigm is the searching for agents acting as multifunctional drugs. 
Methylene blue (MB), the antique medication, seems to meet the above 
criterion. 

Aims: To summarize the probable beneficial effects of MB against 
COVID-19 supported by a discussion of the drug mechanisms of action 
counteracting the pathogenic mechanisms of the disease. 

Methods: PubMed, Google Scholar, and Scopus databases were used to 
collect the biomedical research on MB, and the discussed dataset finally 
included 150 published articles. Those COVID-19 pathogenic pathways 
possibly targeted by MB were critically appraised. 

Results: It was found that MB may act as multimodal agent by targeting 
simultaneously several pathogenic mechanisms of COVID-19 as hypoxic 
damage, hyper-inflammatory reaction and death signaling activation. It 
also may act as a virucidal agent by preventing virus-induced metabolic 
re-orientation. Its high safety profile, low cost, along with the 
mechanisms discussed herein might be essential criteria to test MB as an 
adjuvant therapy against COVID-19. 

Conclusions: Overall, this critical review provides theoretical grounds for 
MB clinical evaluation in the therapeutic management of SARS-CoV-2 
infection.  

Contexto: Casi un año después del inicio de la pandemia de COVID-19 
en Wuhan, China, y aún no ha surgido una terapia específica, contando 
millones de muertos en todo el mundo. La asociación de una replicación 
no controlada del SARS-CoV-2 y los mecanismos dependientes del 
hospedero en la patogénesis del COVID-19 sugieren que cualquier 
estrategia terapéutica debe combinar fármacos antivirales y terapia 
adyuvante para modular las respuestas del hospedero. Debido a la 
multiplicidad de mecanismos involucrados en las expresiones 
patogénicas de la COVID-19, como la hipoxia severa, la reacción 
inflamatoria excesiva y la respuesta inmune deteriorada, un paradigma 
terapéutico emergente es la búsqueda de agentes que actúen como 
fármacos multifuncionales. El azul de metileno (AM), un antiguo 
medicamento, parece cumplir con el criterio anterior.  

Objetivos: Resumir los probables efectos beneficiosos del AM contra la 
COVID-19 apoyados por una discusión de los mecanismos de acción del 
fármaco que pudieran contrarrestar los mecanismos patogénicos de la 
enfermedad. 

Métodos: Se utilizaron las bases de datos PubMed, Google Scholar y 
Scopus para recopilar las investigaciones biomédicas sobre el AM, y el 
conjunto de datos que se discutió finalmente incluyó 150 artículos 
publicados. Se evaluaron críticamente aquellos mecanismos patogénicos 
de la COVID-19 posibles blancos farmacológicos del AM. 

Resultados: Se encontró que el AM puede actuar como un agente 
multimodal al actuar simultáneamente sobre varios mecanismos 
patogénicos de la COVID-19 como el daño hipóxico, la reacción 
hiperinflamatoria y la activación de señalizaciones de muerte. También 
puede actuar como agente virucida al prevenir la reorientación 
metabólica del hospedero inducida por el virus. Su elevado perfil de 
seguridad, bajo costo, junto con los mecanismos discutidos en este 
documento, podrían ser criterios esenciales para probar el AM como 
terapia adyuvante contra la COVID-19. 

Conclusiones En general, esta revisión crítica proporciona las bases 
teóricas para la evaluación clínica del AM en el manejo terapéutico de la 
infección por SARS-CoV-2.  
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INTRODUCTION 

Coronavirus infectious disease (COVID-19), the 
ongoing pandemic infection caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has generated significant socio-economic 
disruption, overwhelming national’s health sys-
tems worldwide. At the time this review was be-
ing written, more than 90 million reported cases 
and over 2 million deaths have been already re-
ported globally (WHO, 2021). Approximately 10-
20% of confirmed cases progress to critical illness, 
with a higher mortality rate than less severe pa-
tients (Huang et al., 2020; Zhou et al., 2020). In-
deed, mortality of critically ill patients is around 
50%, by contrast with 2.3% for overall COVID-19 
patients (Guan et al., 2020; Huang et al., 2020; Wu 
and McGoogan, 2020). This phenomenon unravels 
particularities of pathogenesis mechanisms and 
risk factors interactions leading to a critical illness 
state, characterized by severe pneumonia, acute 
respiratory distress syndrome (ARDS), septic 
shock and/or multiple organ failure (Huang et al., 
2020; Xu et al., 2020). Currently, there are no clini-
cally approved vaccines or specific therapeutic 
drugs available for COVID-19, being the sympto-
matic management and oxygen supply the main 
clinical treatment options. 

Although vaccines seem to be the ultimate solu-
tion against COVID-19, therapeutics targeting the 
abovementioned pathogenic mechanisms, and 
related to the host responses, are needed. Howev-
er, drug development is a costly and timely pro-
cess with a high attrition rate (Lythgoe and Mid-
dleton, 2020). Drugs repurposing seems to be the 
expedite way to deliver a medication to the bed-
side with the minimum bench time. Along these 
lines, several proposals have emerged since 
COVID-19 has spread (Jean et al., 2020; Kandeel 
and Al-Nazawi, 2020; Li and De Clercq, 2020; Ser-
afin et al., 2020), and more than 600 clinical trials 
have launched, including repurposed antivirals, 
antibiotics, and host-targeted agents like im-
munomodulators, anti-inflammatory drugs, and 

antioxidants (Lythgoe and Middleton, 2020; Otta-
viani and Stebbing, 2020). Yet, nonstand-
ard/specific treatment has emerged against 
COVID-19, which keeps active the quest for other 
anti-COVID-19 compounds (Huang et al., 2020). 

Methylene Blue (MB) was first synthesized as a 
dye in 1876, and soon after Paul Erlich demon-
strated its antimalarial effects (Guttmann and Ehr-
lich, 1891). As early as in the 1930s, MB began to 
be used for the treatment of methemoglobinemia 
(Mansouri and Lurie, 1993), while it proved to be 
an effective antidote for carbon monoxide and 
cyanide (CN) poisoning as well (Brooks, 1933; 
Draize, 1933). MB is also a recommended treat-
ment for vasoplegic syndrome in critically ill car-
diac surgical patients (Evora et al., 1997; Evora, 
2000; McCartney et al., 2018), and in septic shock, 
if administered early (Puntillo et al., 2020). It is 
currently being utilized as antimalarial agent 
(Dicko et al., 2018; Mendes et al., 2019) and for the 
decontamination of plasma by various European 
blood collection/treatment agencies (Wainwright 
2000; 2002). Recently, a phase I clinical trials 
(NCT04370288; April 19, 2020) reported the benefi-
cial effects of MB administration to five critical 
COVID-19 patients: four patients surmounted the 
disease by this intervention (Alamdari et al., 2020). 

This review is intended to provide mechanistic 
evidence supporting the findings cited above. At 
the same time, we suggest that MB acting multi-
functionally against key pathogenic components of 
COVID-19 might have supportive adjuvant use-
fulness in treating the infection, particularly its 
complications, including severe hypoxemia, hy-
per-inflammatory reactions, and apoptotic-
mediated lymphopenia. The long period of safe 
use of MB in humans makes it much easier thera-
peutically to develop and it is one of the reasons 
why there is so much interest in it. Bearing in 
mind that the pathogenesis of COVID-19 has been 
recently extensively reviewed (Chu et al., 2020; 
Domingo et al., 2020; Li et al., 2020), only those 
pathogenic pathways possibly targeted by MB will 
be discussed here.  
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MATERIAL AND METHODS 

This study was conducted as a systematic re-
view in which was explored the biomedical litera-
ture on methylene blue (1891-2020) using PubMed, 
Google Scholar, and Scopus databases, and first 
included in the search terms the words “meth-
ylene blue”. The search yielded 20837 articles, of 
which 1263 were selected for a preliminary review 
based mainly on their potential relation to the 
pathogenic mechanisms of COVID-19. For such 
selection, we combined “methylene blue” with the 
following words: “antiviral” (195 articles), “in-
flammation” (353 articles), “apoptosis” (196 arti-
cles), “ischemia-reperfusion” (105 articles), “hy-
poxia/anoxia” (221-227 articles), “substrate-level 
phosphorylation (5 articles), “sepsis” (156 articles), 
and “COVID-19” (15 articles). MB pharmacokinet-
ics, usual dosages, safety, and contraindications 
(11 articles), were also reviewed. The current da-
taset finally included 150 published articles that 
were selected based on the following criteria: rele-
vance of the pharmacological activity concerning 
the pathogenesis and complications of COVID-19, 
the robustness of the scientific finding and scien-
tific quality of the journal, and the timeframe of 
publication. A group of classic papers on COVID-
19 pathogenesis and its clinical manifestation and 
complications was included in the revision to help 
the discussion on MB mechanisms of action coun-
teracting the pathogenic mechanisms of the dis-
ease. Collectively, the data collected here provide 
grounds for MB clinical evaluation in the thera-
peutic management of SARS-CoV-2 infection. 

RESULTS AND DISCUSSION 

Chemical features of MB that could justify anti-
viral effects against SARS CoV-2 

MB (3,7-bis (dimethyl amino) phenothiazine-5-
ium chloride) is a planar tricyclic heteroaromatic 
compound (Fig. 1). This feature would support the 
potential for intercalation between base pairs in 
nucleic acid (Tuite and Kelly, 1993), which in turn 
could inhibit viral replication. Indeed, MB in the 
presence of light potently inactivates RNA viruses 
like VIH-1 and West Nile Virus (Floyd et al., 2004). 

Studies with model viruses indicate that MB-
photomediated viral RNA-protein cross linkage is 
a crucial lethal lesion, most likely promoted by 
singlet oxygen as a key intermediate (Foote, 1976; 
Floyd et al., 2004). The positive charge of MB in-
creases its affinity to the negatively charged RNA 
and guarantees the proximity of target to the sin-
glet oxygen generation, and therefore, antiviral 
effectiveness (Kovacs, 1960; Schneider et al., 1993; 
Jockusch et al., 1996; Floyd et al., 2004). 

 

Figure 1. Methylene blue (3,7-bis(dimethyl amino) 
phenothiazine-5-ium chloride) chemical structure. 

The alkalization of intracellular pH of endo-
somes and lysosomes could also contribute to the 
viral decontamination by MB. Its reduced and un-
charged derivative (leuco-MB) (Fig. 1) could easily 
penetrate lysosomal membranes and protonate it, 
thus favoring a pH increase (Wainwright and Am-
aral, 2005). Accordingly, it could be presumed that 
endosome maturation might be blocked at inter-
mediate stages of endocytosis, resulting in im-
pairment of further import of virions into the cyto-
sol This effect has also been reported for chloro-
quine, the anti-malarial drug structurally derived 
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from MB, a fact currently used as an argument to 
justify its use as off-label therapy against COVID-
19 (Liu et al., 2020a; Wang et al., 2020a). Indeed, 
some authors reported that MB was mainly local-
ized in the lysosomes of murine fibrosarcoma cells 
RIF-2, after 2 h incubation (Walker et al., 2004; 
Mellish et al., 2002). Interesting, on exposure to 
light, this molecule re-localized to the nucleus, 
were could interfere with the virus interaction 
with the host genome (Walker et al., 2004). 

MB could also promote H2O2 production upon 
re-generation from its reduced form. MB acting as 
an alternative electron acceptor in mitochondria 
that takes electrons from complex I, complex II, 
and α-glycero phosphate dehydrogenase, is trans-
formed to MBH2 (Fig. 1), which in turn may re-
duce not only cytochrome c but also O2, thus gen-
erating H2O2 and recycling back to MB (Atamna et 
al., 2008; Tretter et al., 2014). MB has a redox po-
tential of 11 mV (Kamat et al., 1987) and it is very 
efficient in cycling between oxidized and reduced 
forms by suitable redox centers and reducing 
agents such as those in the mitochondria. Both 
hypoxia by increasing the reductive sources for 
MB (NADH, NADPH, FADH2), and re-oxygena-
tion by supplying O2 for MBH2 oxidation, would 
favor the H2O2 generation. The increased concen-
trations of MB-derived H2O2, particularly in phag-
ocytes and neutrophils could facilitate their bio-
cidal actions against SARS-CoV-2 due to increased 
phagosomal HOCl formation mediated by the ac-
tion of myeloperoxidase (Chesney et al., 1996; Ra-
malingam et al., 2018). Overall, these mechanisms 
may justify the potent in vitro virucidal effects of 
MB recently described (Gendrot et al., 2020). 

MB restores the cellular energetic balance after 
CN intoxication, which could be beneficial 
against hypoxic- mediated energetic failure in 
COVID-19 

The uncontrolled SARS-CoV-2 replication pri-
marily in type II pneumocytes, provokes their 
apoptosis/pyroptosis and the release of large 
amounts of pro-inflammatory factors that ulti-
mately led to lungs malfunction and deficient 
blood oxygenation. COVID-19 severe patients of-
ten have dyspnea and/or hypoxemia, after which 

septic shock, ARDS, and metabolic acidosis devel-
op rapidly (Huang et al., 2020; Liu et al., 2020b; 
Singh et al., 2020a). 

Cyanide (CN) intoxication mimics those clinical 
symptoms observed in hypoxia/anoxia, consisting 
of lactic acidosis, coma, and seizures with an early 
depression in medullary neurons producing apnea 
and gasping (Haouzi et al., 2018). Thus, it appears 
to share some similar pathophysiological path-
ways with COVID-19. Indeed, CN has been used 
as a surrogate for anoxia in experimental settings 
as the inhibition by CN of the mitochondrial res-
piratory complexes, particularly cytochrome oxi-
dase would mimic the acute effects of a reduction 
in O2 supply (Cooper and Brown, 2008). The inter-
action of CN with cytochrome oxidase blocks elec-
tron transfer to O2, inhibiting both respiration and 
ATP synthesis (Fig. 2) (Petersen, 1977). As a conse-
quence, the NADH/NAD+ ratio increases, as 
NADH is not oxidized anymore by the fully re-
duced NADH-ubiquinone oxidoreductase (com-
plex I). The limited amount of NAD+ hinders the 
TCA cycle by negative feedback (LaNoue et al., 
1972; Haouzi et al., 2019), which in turn suppresses 
the synthesis of molecules of ATP via the mito-
chondrial substrate-level phosphorylation (Fig. 2). 

In the cytoplasm, the NAD+ dependent sub-
strate level phosphorylation catalyzed by the 
glyceraldehyde 3-phosphate dehydrogenase is also 
halted, and the increase in NADH/NAD+ ratio 
catalyzes the transformation of pyruvate into lac-
tate, resulting in severe lactic acidosis (Burgner 
and Ray, 1984; Haouzi et al., 2019). Both condi-
tions, CN intoxication and COVID-19 severe infec-
tion provoke a metabolism impairment driven by 
mitochondrial inability to reduce O2. MB acts ef-
fectively against CN- induced cardiac and brain 
damage (Cheung et al., 2018; Haouzi et al., 2018; 
2019; 2020). MB antidotal effect against mitochon-
drial toxics is based mainly on the ability to target 
the organelle, thus restoring the TCA cycle and the 
glycolytic activity by oxidizing NADH and de-
creasing the NADH/NAD+ ratio (Komlodi and 
Tretter, 2017) (Fig. 2). The thiazine heterocyclic 
aromatic ring gives it enough lipophilicity, and 
jointly with the positive charge, secures mitochon-
drial accumulation (Gabrielli et al., 2004).  
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Figure 2. Methylene blue (MB) stimulates mitochondrial substrate level phosphorylation (mSLP) in impaired 
mitochondria.  

Under normal condition, the mitochondrial electron transport chain (ETC) guarantees the electron flow (purple arrows) from NADH or 
FADH2 to Oxygen in a chemiosmotic process that push protons from the matrix to the intermembrane space (black straight arrows). The 
proton gradient is used by the F1F0 ATPase to synthetize ATP reflowing protons back to the matrix. This process is known as oxidative 
phosphorylation and the oxygen reduction to water is tightly coupled to the proton gradient generation and ATP synthesis. Under 
hypoxic condition or after CN poisoning, mitochondrial complex IV (cytochrome oxidase) stop functioning, which also blocks the rest of 
the ETC complexes; the proton gradient is dissipated and the F1F0 ATPase stop synthetizing ATP. The high reductive state of the ETC 
boosts the NADH/NAD+ ratio that in turn interrupts the mitochondrial substrate level phosphorylation (mSLP) that depends on NAD+. 
In cytosol, the acetyl CoA formation from pyruvate is hindered by the blockade of pyruvate dehydrogenase activity. Instead, pyruvate is 
reduced to lactic acid by the lactate dehydrogenase activity, lessening cytosolic pH. Because of low redox potential (10 mV), MB can be 
reduced by NADH, thus functioning as an alternative electron acceptor under an impaired mitochondrial electron transport. This effect 
re-generates NAD+, re-starting the mSLP catalyzed by succinyl CoA synthetase and increasing ATP (blue arrows). MBH2, the reduced 
derivative of MB, could transfer electrons to the redox centers at the ETC like coenzyme Q, complex III and cytochrome oxidase, re-
generating MB+. These redox processes might fuel electrons to the ETC, promoting the re-building of the transmembrane membrane 
potential and the ATP synthesis by the classical way. By resuming the Krebs cycle, MB+ promotes pyruvate conversion to acetyl CoA 
instead of lactate, thus reducing the lactate to pyruvate ratio and the lactic academia. 
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NAD+ supply to glycolytic and TCA cycle 
pathways, efficiently stimulate substrate level 
phosphorylation-mediated ATP synthesis, which 
lessens the energetic insufficiency generated by the 
lack of oxidative phosphorylation (Tretter et al., 
2014; Komlodi and Tretter, 2017). After function-
ing as an alternative electron acceptor, the reduced 
form of MB could further re-oxidize the mitochon-
drial electron carriers, thus generating enough H+ 
gradient to drive ATP synthesis by F1F0 ATP syn-
thase (Fig. 2). Along these lines, MB treatment has 
proven to restore the mitochondrial membrane 
potential in left ventricular myocytes exposed to 
100 µM CN (Cheung et al., 2018; Haouzi et al., 
2018). The repolarizing effects of MB could also 
avoid the reverse or hydrolytic action of F1F0 ATP 
synthase, one of the largest ATP consumers under 
ischemic conditions (Christophe and Nicolas, 2006; 
Grover et al., 2008). In the cytoplasm, the restora-
tion of NADH/NAD+ ratio, and the reestablish-
ment of TCA cycle inhibit the conversion of py-
ruvate to lactate, therefore preventing lactic acido-
sis (Fig. 2) (Tranquada et al., 1964; Levine, 1977). In 
this way, antidotal action of MB against mito-
chondrial poisoning could account for its protec-
tive role against Acute Lung Injury or Acute Res-
piratory Distress Syndrome-mediated hypoxemia 
in severe cases of SARS-CoV-2 infection. This pro-
tection might be linked to the restoration of the 
cellular energetic balance, which in turn could 
facilitate the activation of energy-consuming en-
dogenous survival pathways. 

It is also well established that viruses use intra-
cellular compartments such as mitochondria for 
their save replication and dissemination in a toxic 
residency that destroy the organelles (Hagemeijer 
et al., 2012; Singh et al., 2020b). The interaction 
between SARS-CoV2 and host mitochondria may 
disturb both the membrane integrity and function-
al aspects of the mitochondria like the intermem-
brane potential (Gordon et al., 2020). Dysfunction-
al mitochondria can be selectively eliminated via 
mitophagy (Youle and Narendra, 2011). In this 
process, injured organelles are enclosed by the 
autophagosomes, which are then delivered to ly-
sosomes for degradation (Kim and Lemasters, 
2011). It has been observed that MB induced mi-

tophagy both in vitro and in vivo, preserving the 
organelle structure and increasing the membrane 
potential (Di et al., 2015). Besides contributing to 
the mitochondrial quality control selection with 
the associated improvement in energetic balance, 
MB may reduce the host viral load by promoting 
its elimination throughout the induction of virus-
loaded organelles degradation. 

MB anti-inflammatory effects might protect 
against COVID-19 associated hyper 
inflammatory reaction 

Patients with severe COVID-19 exhibit consid-
erably elevated blood levels of pro- inflammatory 
cytokines counting IL-1β, as well as IL-2, IL-6, IL-8, 
IL-17, G- CSF, GM- CSF, IP10, MCP1, MIP1α (also 
known as CCL3) and TNF-ɑ. This phenomenon 
has been called cytokine release syndrome or “cy-
tokine storm” (Domingo et al., 2020; Chu et al. 
2020; Huang et al., 2020; Li et al., 2020; Moore and 
June, 2020; Xu et al., 2020). This hyper-
inflammatory condition, the leading cause of mor-
bidity in patients infected with SARS-CoV and 
MERS-CoV (Channappanavar and Perlman, 2017) 
may result in immune-mediated damage of tissues 
and organs. 

The NOD-like receptor protein 3 (NLRP3) in-
flammasome is a multiprotein complex integrated 
by the NLRP3 protein scaffold, procaspase-1, and 
an adaptor apoptosis speck-like protein (ASC), 
which plays a central role in regulating inflamma-
tion (Wang et al., 2020b). It is commonly involved 
in the immune response to bacteria, viruses, fungi, 
and parasites (Franchi et al., 2012). Its sustained 
and abnormal signaling underlies many degenera-
tive and chronic diseases, including lupus, period-
ic auto-inflammatory syndromes, Crohn's disease, 
osteoarthritis, Alzheimer’s disease, type 2 diabetes, 
atherosclerosis, macular degeneration and cancer 
(Lamkanfi and Dixit, 2012; Heneka et al., 2014). 
Fatal inflammation in mammalian host as a result 
of the H7N9 influenza A virus infection, occurs via 
NLRP3 inflammasome assembly and activation 
(Ren et al., 2017). In SARS-CoV infection, viroporin 
3a triggers the activation NLRP3 inflammasome 
and the secretion of IL-1-β by macrophages (Chen 
et al., 2019). So, a persistent and aberrant NLRP3 
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inflammasome signaling because of uncontrolled 
SARS-CoV-2 replication could explain the hyper-
inflammatory response in severe COVID-19 pa-
tients. Its inhibition, instead of blocking specific 
cytokines, may be a good choice for protecting 
against the cytokine storm (Freeman and Swartz, 
2020; Ratajczak and Kucia, 2020; van den Berg and 
Te Velde, 2020). 

A recent study showed that MB inhibited as-
sembly of the NLRP3 inflammasome induced by 
nigericin, ATP, or MSU crystals in LPS-primed 
bone marrow-derived macrophages (BMDMs) and 
the human monocyte-like cell line, THP-1 (Ahn et 
al., 2017). As the result, MB also attenuated secre-
tion of IL-1β and caspase-1 as well as aggregation 
of Asc, characteristic readouts of inflammasome 
activation (Ahn et al., 2017). MB also curbed the 
mRNA expression up-regulation of other cyto-

kines such as IL-1α, IL-6, IL-10, IL-12, and TNF-α 
in BMDMs treated with LPS. Such findings sug-
gest that MB attenuates the LPS-TLR4 signaling 
pathway, which is essential for NLRP3 inflam-
masome activation (Zhou et al., 2011). The molecu-
lar pathway involved in the anti-NLRP3 inflam-
masome effect of MB included the diminution of 
mitochondrial ROS production, phagocytosis, 
caspase 1 activity, and NLRP3 promoter activity 
(Ahn et al., 2017). Noticeably, MB showed high 
efficacy against two inflammasome-mediated dis-
ease models, LPS-induced lethality and Listeria 
peritonitis (Ahn et al., 2017). MB inhibitory action 
on NLRP3 inflammasome activation and the in-
flammatory response was also confirmed in mi-
croglia after spinal cord injury in rats (Lin et al., 
2017), and rats’ retinas after streptozotocin-
induced diabetes (Hao et al., 2018). The im-
portance of targeting inflammasome to control 
COVID-19 was recently unveiled by ongoing clini-
cal trials with Tranilast, the antiallergic analogue 
of a tryptophan metabolite, which is a NLRP3 in-
flammasome inhibitor (Lythgoe and Middleton, 
2020). 

Nitric oxide (NO) plays a prominent role in vi-
rus- induced neumonia (Akaike et al., 1996; Perro-
ne et al., 2013). The cytokines IFN-ɣ, IL-1β, IL-2, 
IL-6, TNF-α, all released during COVID-19-

associated hyper-inflammation, activate NO syn-
thesis (Hibbs et al., 1992; Akaike et al., 1996; Vaz et 
al., 2011). Blood nitrites and nitrates levels, which 
may reflect NO status (Shiva et al., 2006) have 
been found significantly elevated in COVID-19 
patients (Alamdari et al., 2020). Worth mentioning 
is that NO inhibits mitochondrial respiration by 
targeting cytochrome oxidase (Cleeter et al., 1994), 
and NADH ubiquinone oxidoreductase (Riobo et 
al., 2001), which in turn might potentiate the 
SARS-CoV-2 infection-associated hypoxic condi-
tion. MB has been shown to inhibit the nitric oxide 
(NO) action on vasculature by different mecha-
nisms: i) by hindering the signal transduction of 
NO through deactivating soluble guanylyl cyclase, 
as it forms non-functional heterodimers with the 
enzyme beta subunits (Oz et al., 2011; Wang et al., 
1995; Sobey and Faraci, 1997); ii) by direct inhibi-
tion of inducible NO synthase (iNOS) enzymatic 
activity (Lomniczi et al., 2008); and iii) by attenuat-
ing the expression of iNOS in response to IFN-ɣ, 
and LPS both in cultured cells and endotoxemic 
mice, the latter mechanism elicited by the inhibi-
tion of the binding affinity of transcription factors 
(NF-κB and STAT1) on the promoter region of 
iNOS gene (Huang et al., 2015). Overall, this sce-
nario accounts for the MB-mediated regulation of 
NO-associated disorders such as vasoplegic syn-
drome and septic shock (Evora et al., 1997; Evora, 
2000; Riedel et al., 2003; Faber et al., 2005; 
Demirbilek et al., 2006; Kwok and Howes, 2006; 
McCartney et al., 2018) and endows the molecule 
with the potential to prevent the noxious effects of 
NO in SARS-CoV-2 infection. 

Sirtuin-1 (SIRT1) and NF-E2-related factor 2 
(Nrf2) may mediate the anti-inflammatory effects 
of MB. It was recently demonstrated that the Nrf2 
antioxidant gene expression pathway is inhibited 
in biopsies acquired from COVID-19 patients, and 
the agonist of this signaling induced a cellular an-
tiviral program that potently inhibits replication of 
SARS-CoV2 across cell lines (Olagnier et al., 2020). 
In sepsis-induced ALI, the increases in SIRT1 ac-
tivity promotes lung injury and inflammation. MB 
supplementation activated the expression of proto-
typical genes known to be activated by the Nrf2-
Nrf1/ARE pathway in a murine model of tauopa-
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thy (Stack et al., 2014), in mild-age mice (Gureev et 
al., 2016), in a rat model of colitis (El Sayed and 
Sayed, 2019), and in human fibroblast (Xiong et al., 
2017). Furthermore, in hepatic models, MB treat-
ment up-regulated SIRT1, and thereby decreased 
PGC-1α acetylation (Shin et al., 2014). 

MB inhibits caspase activation 

COVID-19 patients suffer from an immune 
suppression condition named lymphopenia, char-
acterized by sustained reduction of CD4 T and 
CD8 T lymphocytes, which correlates with infec-
tion severity (Liu et al., 2020b). Steady high levels 
of TNF-ɑ and IL-6, resulting from the uncontrolled 
cytokines release, might contribute to T-cell apop-
tosis and/or activation blockade (Channappanav-
ar and Perlman, 2017; Wan et al., 2020) further 
contributing to lymphopenia. Since SARS-CoV-2-
infected T cells may cause cytopathic effects 
(Azkur et al., 2020), it could be hypothesized an 
induction of death mechanisms driven by the vi-
rus. Concerning this, it has been described upregu-
lation of apoptosis, autophagy, and p53 pathways 
in peripheral blood mononuclear cells of COVID-
19 patients (Xiong et al., 2020). MERS-CoV and 
SARS-CoV T lymphocytes can undergo apoptosis 
by the classical intrinsic and extrinsic pathways 
(Yang et al., 2005; Mubarak et al., 2019). Pyropto-
sis, the inflammatory form of cell death, has also 
been suggested as a cause of lymphopenia, based 
on the high levels of IL1-β in COVID-19 patients 
(Yang, 2020). This type of non-apoptotic pro-
grammed cell death is typically triggered by in-
flammasome formation, which leads to caspase-1 
activation (Brennan and Cookson, 2020; Watson et 
al., 2000). The lymphopenic state may prolong the 
viral infection by promoting its host permanence. 
As COVID-19 is a systemic infection, the related 
multiple organ and tissues damage beyond the 
lungs could be mediated by exacerbated death 
signaling. Therefore, compounds able to inhibit 
apoptosis or other form of regulated cell death 
(i.e., pyroptosis, ferroptosis, and necroptosis) 
could be useful for treating COVID-19. In this re-
gard, MB has proven to inhibit caspase 6 in human 
colon carcinoma cells (HCT116) and human pri-
mary neurons (Pakavathkumar et al., 2015). Mouse 

liver protein extracts from mice pre-treated with 
methylene blue and injected with LPS/GALN 
showed significantly less caspase 3 activity than 
untreated animals (Pakavathkumar et al., 2015). 
These authors proposed the oxidation of catalytic 
cysteine Cys163 as the acting mechanism (Paka-
vathkumar et al., 2015). The inhibitory effects on 
caspase-1 were corroborated in BMDMs and hu-
man THP-1 cells (Ahn et al., 2017). This molecule 
also reverses caspase-6-induced cognitive deficits 
in mice expressing human caspase-6 in hippocam-
pal CA1 neurons by inhibiting caspase-6, and 
caspase-6-mediated neurodegeneration and neu-
roinflammation (Zhou et al., 2019). At this point, a 
cytoprotective effects of MB against the COVID-
19-associated toxic inflammation and immune 
cells death can be envisage due to its ability to in-
hibit caspases activation. 

MB protection against hypoxic/ischemic tissues 
damage 

The above-mentioned mechanisms endow MB 
with the capacity to protect tissues and organs 
against pathologies or insults involving hypoxia, 
inflammation and cell death as the pathogenic 
effectors. This is the case of hypoxic/ischemic tis-
sues damage. Lungs, the first target of SARS-CoV-
2 infection are particularly sensitive to MB protec-
tion. So, for instance, some researchers claimed 
that MB protects the isolated rat lungs against is-
chemia-reperfusion injury by attenuating mito-
chondrial damage. As expected, it downregulated 
the mRNA expression levels of TNF-α, IL-1β, IL-6, 
and IL-18 (Tian et al., 2018). MB also attenuates 
lung injury induced by hindlimb (Wang et al., 
2018) and lungs transplantation (Abreu et al., 2014) 
ischemia-reperfusion in rats, by inhibiting oxida-
tive stress and inflammation. MB fully protected 
other organs exposed to ischemic injury namely 
the pancreas (Weinbroum, 2009), kidneys (Sarac et 
al., 2015), heart (Cheung et al., 2018), liver (Aksu et 
al., 2010), and intestine (Morgaz et al., 2020). Pro-
tective effects of this compound against other 
complications induced by xenobiotics or toxics 
have been examined as well (Chen et al., 2015; Lee 
et al., 2015). The protection of brain tissue against 
ischemic damage is the most recurrent effects elic-
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ited by MB (Wen et al., 2011; Di et al., 2015; Ah-
med et al., 2016; Lu et al., 2016; Yang et al., 2017; 
Auchter et al., 2020). This is probably because its 
ability to cross the blood brain barrier (Peter et al., 
2000), interrupting simultaneously critical compo-
nents of ischemic cascade like the overproduction 
of free radicals, the neuroinflammation, and the 
initiation of apoptotic signaling (Fisher, 1997; 
2011). Thus, MB can protect different organs from 
insults involving ischemic damage, inflammation, 
oxidative damage and cell death signaling, which 
could be beneficial for protection against multi-
organ SARS-CoV-2 infection and impairment. 

MB could re-adjust cellular metabolism to a 
mitochondria-centered condition that might 
deprive the virus from its energetic and 
structural supplies 

Most eukaryotic viruses examined to date in-
duce aerobic glycolysis also known as the War-
burg effect. Proteomic data in HIV-1-infected mac-
rophages have unveiled an increase in abundance 
of enzymes in the glycolytic pathway (pentose 
phosphate and pyruvate metabolism), together 
with downregulation of some key mitochondrial 
enzymes such as glutamate dehydrogenase 2 
(GLUD2), adenylate kinase 2 (AK2) and transketo-
lase (TKT) (Barrero et al., 2013). Similar proteomic 
analysis suggests that hepatitis C virus also induc-
es early perturbations in glycolysis, in pentose 
phosphate pathway, and the citric acid cycle, 
which favor host biosynthetic activities supporting 
viral replication and propagation (Diamond et al., 
2010). Influenza virus infection increases glucose 
uptake, aerobic glycolysis, and he pentose phos-
phate shunt to help produce more nucleotides. 
Besides, mitochondrial fatty acid β-oxidation de-
creases significantly simultaneously with an in-
crease in biosynthesis of fatty acids and membrane 
lipids (Keshavarz et al., 2020). The alterations of 
carbon source utilization by infected cells can in-
crease available energy for virus replication and 
virion production, provide specific cellular sub-
strates for virus particles and create viral replica-
tion niches while increasing infected cell survival. 

As above, SARS-CoV-2 infection might hijack the 
host metabolic machinery to guarantee enough 
energetic and structural supplies to facilitate its 
replication and biogenesis. So, targeting the inhibi-
tion of these cellular metabolic pathways by shift-
ing the Warburg effect to a mitochondrial-
mediated energetic could stop the infection propa-
gation. MB, as an alternative mitochondrial elec-
tron carrier, reverses the Warburg effect, and at-
tenuates anabolism in glioblastoma cells (Poteet et 
al., 2013). MB in nanomolar range induces PGC1α 
and SURF1 in normal human lung fibroblast cells 
(IMR39), which are meaningful signals for mito-
chondrial and complex IV biogenesis (Atamna et 
al., 2015). Also, MB increases the ratio 
NAD+/NADH, and pAMPK/AMPK (Atamna et 
al., 2015), which is consistent with the increase in 
NADH oxidation by mitochondria in MB-treated 
cells. In this way, this molecule restores mitochon-
drial oxidative phosphorylation and reduce 
NADPH, thus limiting the building bricks for vi-
rus development. 

Recently it was shown that SARS-CoV-2 infec-
tion dysregulates the set of genes involved in con-
sumption and biosynthesis of nicotinamide ade-
nine dinucleotide (NAD+), particularly the non-
canonical poly(ADP-ribose) polymerase (PARP) 
family members genes (Heer et al., 2020). This de-
pressed cellular NAD+ levels, and provide a plau-
sible explanation as to why aging, where NAD+ 
levels decline (Massudi et al., 2012), positively cor-
relate with fatality in COVID-19 patients. At the 
same time, it also suggests that higher NAD+ sta-
tus could protect from infection, which is con-
sistent with the potentially higher NAD+ status of 
people who successfully fight off COVID-19 dis-
ease (Yang et al., 2020). MB, by restoring cellular 
NAD+ levels, may improve PARP function and 
decreased coronavirus replication. Summarizing, 
MB could switch the cellular metabolism from a 
biosynthetic/glycolytic phenotype triggered by 
SARS-CoV-2 to an energetic, mitochondria-
centered hindering specifics energetic and struc-
tural virus supplies. 
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Table 1. Common doses of MB used in the clinical practice. 

Disease Dose Observation References 

Methemoglobinemia 1-2 mg/kg over 5-
10 min 

 (Clifton 2nd and 
Leikin, 2003; Ginimuge 
and Jyothi, 2010) 

Sepsis 1-2 mg/kg over 10-
30 min 

0.25–1 mg/kg/h for 6 h started 2 
h after the initial bolus dose 

(Kirov et al., 2001) 

Vasoplegic syndrome i.v. single dose 2 
mg/kg, 20-minute 
infusion time 

Continuous infusions may be 
beneficial after the initial bolus for 
up to 48–72 h 

(Leyh et al., 2003) 

Bipolar disorder 2-5 mg/kg  (Alda et al., 2017) 

Malaria  15 mg/kg orally 
administered for 3 
days 

 (Dicko et al., 2018; 
Mendes et al., 2019) 

 
MB pharmacokinetics, usual dosages, safety and 
contraindications 

Table 1 shows the common doses of MB used in 
the clinical practice. MB intravenously adminis-
tered displays a multicompartmental pharmacoki-
netics with plasma half-life of 5–6.5 h (Yang et al., 
2017). It is eliminated in bile, feces, and urine as 
leucomethylene blue (Clifton 2nd and Leikin, 2003; 
Allegaert et al., 2004). Usually well tolerated, the 
main side effects are irritation of the gastrointesti-
nal tract when administered orally and burning in 
the urinary tract. Its continuous peripheral infu-
sion for prolonged duration may lead to local cu-
taneous necrosis (Dumbarton et al., 2012). Some 
patients find the urine discoloration worrying. 
toxic manifestations of MTB (>7 mg/kg) include 
hemolysis, methemoglobinemia, nausea and vom-
iting, chest pain, and hypertension (Faber et al., 
2005). 

According to MB pharmacodynamics, glucose-
6-phosphate dehydrogenase deficiency is a rela-
tively common contraindication to its treatment 
because of the risk of hemolytic anemia 
(McDonagh et al., 2013). Moreover, it is contrain-
dicated in patients treated with serotonergic 
agents due to the increased risk of serotonin syn-
drome (Alda, 2019). 

Future perspectives 

The epidemiological behavior of COVID-19 is 
characterized by a continuous increase in morbidi-

ty and deaths worldwide, together with the occur-
rence of new SARS-CoV-2 variants with an unusu-
al large number of mutations that spread more 
easily and quickly. In this sense, it is urgent to in-
troduce therapies to contain the infection and 
deaths until the application of vaccines becomes 
extensive. To date, no therapy has been effective in 
rescuing patients with severe complications from 
viral infection. The array of mechanisms involved 
in COVID-19 pathogenic expressions that lead to 
the severity of infection and death, prompts to 
search for multimodal-acting therapeutics agents 
that target simultaneously several pathological 
mechanisms. In this context, methylene blue, due 
to the multiplicity of pharmacological mechanisms 
potentially related to virus pathogenic pathways, 
could be an option to be evaluated as part of the 
protocols applied to critically ill patients. 

CONCLUSIONS 

The association of an uncontrolled SARS-CoV-2 
replication and host-dependent mechanisms in 
COVID-19 pathogenesis suggests that any thera-
peutic strategy must combine antiviral drugs and 
adjuvant therapy to modulate the host’s responses. 
Most of the accepted therapeutics schemes against 
COVID-19 include, besides antivirals, a combina-
tion of anti-inflammatory, immunomodulators, 
anticoagulants and antioxidants, which could in-
terfere each other at the pharmacokinetic or phar-
macodynamics level, thus abrogating an effect or 
potentiating it to toxic levels. The best adjuvant 

http://jppres.com/jppres


Pardo Andreu Methylene blue therapy against COVID-19 

 

http://jppres.com/jppres  J Pharm Pharmacogn Res (2021) 9(3): 389 

 

therapy would be those that include into one drug 
most of the mechanisms that can impede the nox-
ious host responses triggered by the virus infec-
tion. We are proposing herein such a drug; MB, by 
a multimodal way of action could simultaneously 
impact the several mechanisms related to COVID-
19 complications, as the severe hypoxia, the hyper-
inflammatory reactions, and the increased death 
signaling leading to an immunosuppressive state 
(Fig. 3). Likewise, it could re-adjust cellular me-
tabolism to a mitochondria-centered condition that 
might deprive the virus of energetic and structural 
supplies. Recently, a preliminary phase I clinical 

trials based on the use of MB proved to be useful 
for treating COVID-19 complications by preserv-
ing the lives of fourth out of five critically ill pa-
tients.  

Additionally, recent paper documented a po-
tent in vitro virucidal effects of MB at low mi-
cromolar concentration. These facts, along with a 
high safety profile validated by more than 120 
years in the clinic, its privileged pharmacokinetics, 
and low cost, all suggests that MB could help pa-
tients to overcome COVID-19 and that its use 
should be urgently generalized. 

 

Figure 3. Feasibility of MB use as an adjuvant protective therapy against COVID-19.  

MB stands out by a multimodal way of action targeting simultaneously several pathogenic mechanism of COVID-19 as hypoxic 
damage by rescuing mitochondrial function (4), hyper-inflammatory reaction by inhibiting NLRP3 inflammasome priming and 
activation (7), and intensifying death signaling by inhibiting caspases activation (8) and apoptosis (9). It also may act as a virucidal 
agent by hindering the interaction between SARS-CoV-2 spike protein and its cognate receptor ACE2 (1), by interfering with the 
phagosome maturation (2), by preventing viral translation and replication upon interaction with RNA (3), and by promoting H2O2 
generation and oxidative virus destruction (6). These features, together with its potential to prevent virus-induced metabolic re-
orientation (5), reinforces the probability of success combating the infection. On the other hand, a low toxic profile and extensive 
distribution among different organs, along with a low cost could, could notably accelerate the generalization of clinical trials. 
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