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Abstract 
 

Clerodendrum inerme can potentially alleviate diabetes, but little is known about its molecular mechanisms. 

This study aimed to investigate the chemical compound of C. inerme and its molecular mechanism to treat 

diabetes. The KNApSAcK was used to find secondary metabolite of C. inerme. A screening was done to 

find compounds by estimating Absorption, Distribution, Metabolism, and Excretion (ADME) on the 

SwissADME. The SwissTargetPrediction tool connects predictions of target proteins from compounds that 

pass screening to various probable proteins and utilizing the StringDB to show the network between target 

proteins and associated diseases. After finding the target protein, continue docking the chemical compound 

to the target protein using PyRx with AutoDock 4.2.6. The result from StringDB found four chemical 

compounds ((Z)-3-Hexenyl beta-D-glucopyranoside, Rhodioloside, Sammangaoside B, Clerodermic acid) 

that can connected to 4 target proteins (DPP4, IL1B, PPARA, PPARG). According to the docking results, 

clerodermic acid has good protein binding properties with DPP4, IL1B, PPARA, PPARG, rammangaoside 

B with PPARG, and rhodioloside with DPP4. C. inerme contains clerodermic acid, rammangaoside B, and 

rhodioloside compounds, which can potentially treat diabetes mellitus. 

 

Kata Kunci: Clerodendrum inerme, diabetes, network pharmacology, molecular docking, diabetes 

mellitus 
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Background 

 

Diabetes mellitus is a collective term for heterogeneous metabolic disorders whose main finding 

is chronic hyperglycemia. The cause is insulin secretion disorder, insulin disorder effect, or usually 

both (Petersmann et al., 2019). Diabetes mellitus is classified into three types. Type 1 diabetes 

causes cell damage, resulting in the body's inability to produce insulin. Insulin resistance, a 

condition in which cells fail to respond to insulin properly, is the starting point of type 2 diabetes 

(Tanase et al., 2020). experienced by pregnant women is due to a decrease in the body's ability to 

produce insulin to control blood sugar levels during pregnancy (Setiabudy, Nafriadi and Instiaty, 

2016). The goal of diabetes mellitus treatment is to achieve normal levels of insulin in the plasma 

(Ferguson and Finck, 2021). 

According to IDF data, by 2021, 537 million adults aged 20-79 years are diagnosed with diabetes. 

The number is expected to rise to 643 million by 2030 and 783 by 2045. In Southeast Asia, 90 

million adults have diabetes, which causes 747,000 deaths (Webber, 2021). New therapies must 

be invented to meet the needs of health care, including promotion, prevention, treatment, and 

rehabilitation, so that the prevalence of diabetes mellitus can be decreased. Dozens or even 

hundreds of new drugs are released to the market every year after going through a time-consuming 

and expensive development process (Hairunnisa, 2019). 

Clerodendrum inerme, commonly known as gambir laut in Indonesia, belongs to the Verbenaceae 

family. It is commonly found in Australia, Asia, Malaysia, and the Pacific Islands. C. inerme is 

traditionally used to treat malaria. It is also used as a thermal suppressant, uterine stimulant, pest 

control agent, and antiseptic (Kar et al., 2019). Although it is not clear that this plant has 

antidiabetic effects, it is a good plant to study the contents of secondary metabolite compounds 

with antidiabetic effects. This research aims to find new drugs with antidiabetic effects through 

network pharmacology and molecular docking. The method is used as an early stage of research 

before further in-vivo research. 

 

Research Methods  

 

Tools 

This study was conducted using several online databases and software. Online database used were 

KNApSAcK (https://www.knapsackfamily.com/KNApSAcK), Pubchem 

(https://pubchem.ncbi.nlm.nih.gov/), SwissADME (http://www.swissadme.ch/), 

SwissTargetPrediction (http://www.swisstargetprediction.ch/), GeneCards (https 

/www.genecards.org/), Venny 2.1.0. (https://bioinfogp.cnb.csic.es/tools/venny/), StringDB 

(https://string-db.org/), Protein Data Bank (https://www.rcsb.org/), and Proteins.Plus 

(https://proteins.plus/). The software applications used were Avogadro, BIOVIA Discovery Studio 

Visualizer version 4.5, and PyRx version 0.8.  

 

Secondary Metabolite of C. inerme Identification and Network Pharmacology Analysis 

The secondary metabolite of C. inerme was obtained from KNApSAcK, and PubChem was used 

to search for the canonical SMILE compounds (Kim, 2021). Screening of compounds using the 

SwissADME website that will predict the bioavailability of the compound using the BOILED-egg 

method. Furthermore, SwissTargetPrediction was used to predict proteins that can interact with 

secondary metabolite compounds (Lena et al., 2023). Search for protein targets that interact with 

diabetes was carried out using the GeneCards (Stelzer et al., 2016). followed by looking for protein 

intersections predicted to have ties to compounds from the plant using the Venny database (Oliver, 

2015). Furthermore, the intersection results are entered into the StringDB for network 

pharmacology analysis (Szklarczyk et al., 2021). 
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Molecular Docking Analysis 

Docking molecules using 3D files obtained from PubChem and prepared using Avogadro by 

MMF94s Method. Separation of 3D files between the target protein of diabetes mellitus and its 

ligand was done using BIOVIA Discovery Studio. Molecular docking was done using PyRx 0.8 

with autodock 4. The results of the docking are then visualized using the Proteins.Plus webserver. 

 

Result and Discussions 

 

Identification, Bioavailabity Prediction, and Network Pharmacology Analysis of Secondary 

Metabolite of C. Inerme 

The secondary metabolite of C. inerme was obtained using the KNApSAcK database. There were 

found 24 metabolite compounds contained in the C. inerme. SMILES canonical code was searched 

using PubChem, but six of these compounds were not found in its SMILES code, so they were not 

included in the study (Table 1). 

Table 1. List of metabolite compounds contained in C. inerme taken from the KNApSAcK 

website. 

NO Metabolite Compound Code 

1 Acteoside Mol 1 

2 Scutellarein 4'-methyl ether Mol 2 

3 Monomelittoside Mol 3 

4 Melittoside Mol 4 

5 Rehmannioside D Mol 5 

6 (Z)-3-Hexenyl beta-D-glucopyranoside Mol 6 

7 Decaffeoylacteoside Mol 7 

8 Isoacteoside Mol 8 

9 Leucosceptoside A Mol 9 

10 Rhodioloside Mol 10 

11 Sammangaoside A Mol 11 

12 Sammangaoside B Mol 12 

13 Benzyl beta-primeveroside Mol 13 

14 14,15-Dihydro-15beta-methoxy-3-epicaryoptin Mol 14 

15 14,15-Dihydro-15-hydroxy-3-epicaryoptin Mol 15 

16 (7S,8R)-Dehydrodiconiferyl alcohol 4-O-beta-glucopyranoside Mol 16 

17 (7S,8R)-Dehydrodiconiferyl alcohol 9-O-beta-glucopyranoside Mol 17 

18 11-Pentacosanone Mol 18 

19 Leonuriside A Mol 19 

20 6-Nonacosanone Mol 20 

21 Clerodermic acid Mol 21 

22 Darendoside B Mol 22 

23 Sammangaoside C Mol 23 

24 Seguinoside K Mol 24 

 

Then, the next stage is carried out, namely, selecting compounds based on ADME. The term used 

is Lipinski's Rules of Five (RoF), which says that in compounds which have a molecular weight 

lower than 500 Da, the number of hydrogen bond donors is less than 5, the number of hydrogen 

bond acceptors is less than 10, and 𝑥 log 𝑃 is lower than 5 have high bioavailability (Nogara et al., 

2015). From Lipinski's RoF, it was obtained four compounds: Mol 6, Mol 10, Mol 12, and Mol 

21. Besides that, the compounds were also examined using the Brain Or Intestinal EstimateD 

(BOILED-Egg) method. For this purpose, BOILED-Egg is proposed as an accurate prediction 

model that calculates the lipophilicity and polarity of small molecules (Daina and Zoete, 2016). 
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From these results, one compound (Mol 21) penetrated the blood-brain barrier, marked in the 

yellow section. The other three compounds (Mol 6, Mol 10, and Mol 12) are in the white part, 

meaning these compounds cannot penetrate the blood-brain barrier but can be absorbed in the 

digestive tract. 

 
Figure 1. Bioavailability prediction with BOILED-Egg Method 

 

The four compounds that pass ADME will be checked to see whether they can bind to proteins 

using SwissTargetPrediction. The prediction results are a percentage probability of the target 

protein binding. After knowing the target protein of the plant compound, continue comparing it 

with the Diabetes Mellitus-related protein obtained from GeneCards. 178 proteins were predicted 

to interact with secondary metabolite compounds, and there are found 15,390 diabetes mellitus-

related proteins. Intersection with Venny found that only 159 proteins from SwissTargetPrediction 

were related to Diabetes Mellitus. 

 
Figure 2. Results of target protein selection between selected compound target protein 

from C. inerme and target proteins from Diabetes Mellitus 
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Table 2. A list of target proteins after selection using Venny 

Code Protein 

ACE, ADA, ADAM17, ADK, ADORA1, ADORA2A, ADORA2B, ADORA3, ADRA1A, 

ADRA1D, ADRA2A, ADRA2B, ADRA2C, AGTR1, AGTR2, AHCY, AKR1B1, AKR1C3, 

ALOX5, AMPD3, AR, ATP12A, BCL2, BCL2L1, CA1, CA2, CA3, CA4, CA6, CA7, CA9, 

CCKBR, CDA, CDC25A, CDC25B, CDC25C, CDK1, CES2, CMA1, CSNK2A1, CTRC, 

CTSG, CXCR2, CYP17A1, CYP19A1, CYP26A1, CYP2C19, CYP2D6, DAO, DHODH, 

DPP4, ECE1, EDNRA, EGFR, EPAS1, EPHX2, ESR2, F2, F2RL1, FGF1, FGF2, FLT1, 

FOLH1, FUCA1, GAA, GAPDH, GRK1, GRM2, GSK3B, HCAR2, HDAC1, HK1, HK2, 

HMGCR, HPSE, HRAS, HSD11B1, HSD11B2, HSP90AA1, HSP90AB1, HSPA5, HSPA8, 

HTR2B, IDO1, IGFBP3, IL1B, IL2, KDM4C, KIT, LGALS3, LGALS4, MAOA, MAP3K7, 

MAPK1, MCL1, MDM2, MME, MMP1, MMP12, MMP13, MMP2, MMP3, MMP7, MMP8, 

NR3C1, NR3C2, OGA, OXER1, PDE7A, PGR, PIN1, PLA2G2A, PLA2G4A, PNP, POLA1, 

PPARA, PPARD, PPARG, PPP1CC, PPP2CA, PREP, PRKCA, PRSS1, PTGDR2, PTGES, 

PTGES2, PTGS2, PTPN1, PTPN2, PYGL, RARA, RARB, RARG, RBP4, RORC, RXRA, 

RXRB, RXRG, SERPINA6, SHBG, SLC22A12, SLC29A1, SLC5A1, SLC5A2, SLC5A4, 

SORT1, SRD5A2, STAT3, TBXA2R, TBXAS1, THRA, THRB, TK1, TP53, TRPA1, TYMP, 

TYMS, TYR, VEGFA 

 

The next step is to look for functions and correlations between protein targets by using network 

pharmacology. This correlation includes direct (physical) and indirect (functional) associations, 

which can be done via the StringDB. that aims to place its focus on coverage (application of 

thousands of genome-sequenced organisms), on rich sources of evidence (e.g. including automated 

text mining) and usability features (such as customization, enrichment detection and programmatic 

access) (Szklarczyk et al., 2021). The target prediction results from 159 target proteins showed 

that there were five proteins associated with Diabetes Mellitus: Dipeptidyl peptidase-4 (DPP4), 

Interleukin-1 beta (IL1B), Peroxisome Proliferator-Activated Receptor Alpha (PPARA), 

Peroxisome Proliferator-Activated Receptor Gamma (PPARG), Solute Carrier Family 5 Member 

2 (SLC5A2). When searching for 3D proteins from Protein Data Bank, no SLC5A2 protein was 

found, so this protein was eliminated. 

Inhibition of DPP4 has the effect of inhibiting GLP-1, GLP-2 and GIP which will reduce blood 

sugar (Nistala and Savin, 2017). IL1B, a cytokine that promotes inflammation and influences 

crucial metabolic functions such as insulin production and β-cell apoptosis (Alfadul, Sabico and 

Al-Daghri, 2022). PPARA agonist affects glucose homeostasis through pancreatic function so that 

PPARA agonists can maintain B cells (Lin, Wang and Li, 2022). Controlling adipogenesis in white 

adipose tissue is one of the main roles of PPARG. Many endogenous ligands that serve as an 

indication of the metabolic state of the cell can be obtained with PPARG (Frkic, Richter and 

Bruning, 2021). 
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Figure 3. Network Pharmacology prediction results using String-db. The red color shows the 

target protein associated with Diabetes Mellitus. 

 

 
Figure 4. Network pharmacology of target prediction protein for Diabetes Mellitus 

 

Molecular Docking Analysis 

Molecular docking was carried out between the four secondary metabolite that pass Lipinski's RoF 

and BOILED-Egg, with the proteins DPP4 (PDB ID = 6EOR), IL1B (PDB ID = 6Y8I), PPARA 

(PDB ID = 3KDT), and PPARG ((PDB ID = 8HUP). More complete docking results can be seen 

in table 4. The docking results obtained only a few have the highest potential as anti-diabetics. A 

compound can be said to be good if the energy binding value and the inhibition constant value 

were low. The lower the value of the energy binding and inhibition constant, the better the 

compound binds to protein (Muchlisin et al., 2022). Docking result that have good potential only 

Mol 10 to DPP4 (-8.16 kcal/mol, 1.04 µM), Mol 12 to PPARG (-6.98 kcal/mol, 7.6 µM), and Mol 

21 to DPP4 (-7.79 kcal/mol, 1.94 µM), IL1B (-7.63 kcal/mol, 2.56 µM), PPARA (-9.07 kcal/mol, 

225.97 ηM), and PPARG (8.09 kcal/mol, 1.17 µM) which has high potential as an anti-diabetic 

drug candidate. The bonds formed between the compound and the target protein are in the form of 

hydrogen and hydrophilic bonds which can be seen in table 5. In the docking results of 

Sammangaoside B to PPARA, no hydrogen or hydrophilic bonds occurred. 
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Table 3. Docking results of secondary metabolite compounds of C. inerme to the target proteins 

DPP4, IL1B, PPARA, PPARG. 

Compound 

Code 

PPARG IL1B PPARA DPP4 

Protein 

Binding 

Inhibition 

Constant 

Protein 

Binding 

Inhibition 

Constant 

Protein 

Binding 

Inhibition 

Constant 

Protein 

Binding 

Inhibition 

Constant 

Mol 6 -5.06 

kcal/mol 

196.85  

µM 

-4.93 

kcal/mol 

245.20  

µM 

-5.51 

kcal/mol 

91.58  

µM 

-5.01 

kcal/mol 

288.67  

µM 

Mol 10 -6.47 

kcal/mol 

18.05  

µM 

-6.18 

kcal/mol 

29.65  

µM 

-6.52 

kcal/mol 

26.37  

µM 

-8.16 

kcal/mol 

1.04  µM 

Mol 12 -6.98 

kcal/mol 

7.6  µM -3.62 

kcal/mol 

3.56  µM -5.99 

kcal/mol 

40.76  

µM 

-6.65 

kcal/mol 

13.33  

µM 

Mol 21 -8.09 

kcal/mol 

1.17  µM -7.63 

kcal/mol 

2.56  µM -9.07 

kcal/mol 

225.97  

nM 

-7.79 

kcal/mol 

1.94  µM 

Ligand -7.63 

kcal/mol 

2.54  µM -6.82 

kcal/mol 

10.02  

µM 

-9.73 

kcal/mol 

73.62  

nM 

-12.40 

kcal/mol 

811.94 

pM 

 

Table 4. Hydrogen bond and hydrophilic interaction of secondary metabolite of C. inerme 

Compound 

Code 

PPARG IL1B PPARA DPP4 

Hydrogen Hydrophilic Hydrogen Hydrophilic Hydrogen Hydrophilic Hydrogen Hydrophilic 

Mol 6 CYS285,  

LEU340, 

SER342, 

GLU343 

ARG288 THR147, 

GLN149 

GLN15, 

THR147 

 

PHE273,  

GIN277, 

SER280, 

TYR314 

SER280, 

ILE317 

GLN648, 

GLN650,  

ASN653, 

LYS660 

 

Mol 10 CYS285,  

ARG288, 

GLU291,  

LEU340,  

GLU343 

PHE264,  

ARG288 

ASP12, 

MET148 

GLN15, 

THR147 

 

PHE273,  

GLN277, 

SER280, 

THR283, 

TYR314 

THR279 

 

GLU248, 

GLU249,  

GLN648, 

SER730,  

VAL756 

TYR762,  

TYR731,  

VAL756 

TYR766 

 

Mol 12 HIS266,  

ARG288,  

ILE326, 

SER342 

ARG288,  

ALA292, 

ILE326, 

LEU330, 

LEU333 

ASN108, 

MET148 

 

MET148, 

PHE150 

 

  GLN648, 

GLN650, 

LYS660,  

TYR661, 

TRP729 

PHE642, 

TYR644,  

LEU651 

Mol 21 TYR327, 

GLU343, 

LYS367,  

ARG288, 

LEU330, 

LEU333, 

VAL339,  

ILE341 

MET148 

 

MET148, 

GLN149, 

PHE150 

 

THR279, 

TYR314,  

HIS440,  

TYR464 

CYS276,  

SER280,   

PHE318,  

MET355,  

HIS440  

LYS660, 

TRP729 

PHE642,  

TYR644,  

TRP729 

Ligand PHE264,  

ARG288, 

SER342 

PHE264,  

HIS266,  

GLY284,  

ARG288 

GLN39, 

THR9 

 

 CYS276,  

SER280,   

TYR314,  

HIS440 

CYS275, 

THR279,  

SER280 

GLU249, 

TYR762,  

ASN810 

HIS500, 

GLN648,  

VAL649, 

SER730, 

TYR731,  

VAL756, 

TYR766 



Proceedings of International Pharmacy Ulul Albab Conference and Seminar (PLANAR), 3, 
57-65 

64 
 

 
Figure 5. 2D and 3D images of 1. Rhodioloside to DPP4, 2. Sammangaoside B to PPARG, 3. 

Clerodermic acid to DPP4, 4. Clerodermic acid to IL1B, 5. Clerodermic acid to PPARA, 6. 

Clerodermic acid to PPARG. 

 

Conclusion 

 

The compounds Rhodioloside, Sammangaoside B, Clerodermic Acid have potential as new anti-

diabetic drugs by binding to the proteins DPP4, IL1B, PPARA, PPARG.  
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