Repository Akfar Bumi Siliwangi



Phyllanthus tenellus Roxb. and Kaempferia parviflora Wall. ex Baker compounds as inhibitors of SARS-CoV-2 main protease and RNA-dependent RNA polymerase: A molecular docking study



Description:
Context: The outbreak of a novel coronavirus, SARS-CoV-2 has caused an unprecedented COVID-19 pandemic. To put an end to this pandemic, effective antivirals should be identified or developed for COVID-19 treatment. However, specific and effective antivirals or inhibitors against SARS-CoV-2 are still lacking. Aims: To evaluate bioactive compounds from Phyllanthus tenellus and Kaempferia parviflora as inhibitors against two essential SARS-CoV-2 proteins, main protease (M pro) and RNA-dependent RNA polymerase (RdRp), through molecular docking studies and to predict the drug-likeness properties of the compounds. Methods: The inhibition potential and interaction of P. tenellus and K. parviflora compounds against Mpro and RdRp were assessed through molecular docking. The drug-likeness properties of the compounds were predicted using SwissADME and AdmetSAR tools. Results: Rutin and ellagic acid glucoside from P. tenellus and 4-hydroxy-6-methoxyflavone and 5-hydroxy-3,7,4’-trimethoxyflavone from K. parviflora exhibited the highest binding conformations to M pro by interacting with its substrate binding site that was predicted to halt the Mpro activity. As for RdRp, ellagitannin and rutin from P. tenellus and peonidin and 5,3’-dihydroxy-3,7,4’-trimethoxyflavone from K. parviflora were the best-docked compounds that bound to the RdRp catalytic domain (Asp760 and Asp761) and NTP-entry channel that were anticipated to stop RNA polymerization. However, in the context of drug developability, 4-hydroxy-6-methoxyflavone, 5-hydroxy-3,7,4’-trimethoxyflavone, peonidin and 5,3’-dihydroxy-3,7,4’-trimethoxyflavone from K. parviflora were highly potential to be oral active drugs compared to rutin, ellagic acid glucoside and ellagitannin from P. tenellus. Conclusions: P. tenellus and K. parviflora compounds, particularly the aforementioned compounds, were suggested as potential inhibitors of SARS-CoV-2 Mpro and RdRp.

URL:
http://103.158.96.210:88/web_repository/uploads/jppres22.1485_10.6.1103.pdf

Type:
Journal

Document:
Diploma III Farmasi

Date:
23-06-2024

Author:
Suhaina Supian